University of Florida Journal of Law & Public Policy

Volume 19 | Issue 1 Article 7

2008

Don't Stop the Music: No Strict Products Liability for Embedded
Software

Seldon J. Childers

Follow this and additional works at: https://scholarship.law.ufl.edu/jlpp

b Part of the Law and Society Commons, and the Public Law and Legal Theory Commons

Recommended Citation

Childers, Seldon J. (2008) "Don't Stop the Music: No Strict Products Liability for Embedded Software,"
University of Florida Journal of Law & Public Policy. Vol. 19: Iss. 1, Article 7.

Available at: https://scholarship.law.ufl.edu/jlpp/vol19/iss1/7

This Article is brought to you for free and open access by UF Law Scholarship Repository. It has been accepted for
inclusion in University of Florida Journal of Law & Public Policy by an authorized editor of UF Law Scholarship
Repository. For more information, please contact rachel@law.ufl.edu.


https://scholarship.law.ufl.edu/jlpp
https://scholarship.law.ufl.edu/jlpp/vol19
https://scholarship.law.ufl.edu/jlpp/vol19/iss1
https://scholarship.law.ufl.edu/jlpp/vol19/iss1/7
https://scholarship.law.ufl.edu/jlpp?utm_source=scholarship.law.ufl.edu%2Fjlpp%2Fvol19%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/853?utm_source=scholarship.law.ufl.edu%2Fjlpp%2Fvol19%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/871?utm_source=scholarship.law.ufl.edu%2Fjlpp%2Fvol19%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.law.ufl.edu/jlpp/vol19/iss1/7?utm_source=scholarship.law.ufl.edu%2Fjlpp%2Fvol19%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rachel@law.ufl.edu

DON’T STOP THE MUSIC: NO STRICT PRODUCTS

LIABILITY FOR EMBEDDED SOFTWARE’

Seldon J. Childers**

INTRODUCTION ...... ..ottt

HISTORY AND POLICY RATIONALES FOR STRICT
PRODUCTS LIABILITY ..........tiriiiieiinnnennn..
A. A Brief History of the Doctrine of Strict

B.
C.

Product Liability ............ .. ...,
The Policy Rationales for Strict Products Liability . . . . . .
The Legal Background of Software and Tort Law . . . . . ..

THE ARGUMENT AGAINST EXTENDING STRICT PRODUCTS
LIABILITY TOSOFTWARE . .. ..ottt ittt e eiianan

A.

B.

C
D.
E

Extending Strict Liability to New Realms is

Inconsistent with Tort Reform .. ....................
The “Stack” Problem Posed by Component Software
Supplier Liability . ........ ... .. ... ... ... .....

. Embedded Software is Not Inherently Different than

Other Types of Software . ........................
Strict Liability Should Apply Only to Manufacturing
Defects, and not to Software .. .....................

. Software—at the Current State of the Art—is an

Essential but Unavoidably Unsafe Product Category
Deserving of Exemption from Strict Liability ..........
1. Necessary Products Facing Potentially
Industry-Swallowing Liability Should be
Exempt from Strict Products Liability .............
2. Unavoidably Unsafe Products Like Software
Should be Exempt from Strict Products Liability . ...
3. The Software Industry is Immature and Should be
Nurtured, Not Burdened with Strict Liability .......

IV.  ALTERNATIVES TO STRICT PRODUCTS LIABILITY ..........

* Editor’s Note: This Note received highest honors in the University of Florida Journal of

Law & Public Policy Open Writing Competition in Summer 2007.

** Juris Doctor Candidate, 2008, University of Florida Levin College of Law; software
developer and management consultant, 1993-2004; jchilders98@gmail.com. The author would like
to thank professor Lyrissa Lidsky for all her encouragement, assistance, and support.

125



126 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

A. Ordinary Negligence . ................c.ccuen.. 176
B. Design and Warnings Defects ...................... 177
C. Product Warranties (Express and Implied) ............ 178
D. Professional Malpractice Toward
Software Developers .................. ... .. ..... 178
E. Hardware-Based Products Liability ................. 179
F. Misrepresentation (Negligent and Fraudulent) . . .. .. ... 180
G. ProofofCausation . . . ................c.ccovuui... 181
V. CONCLUSION AND RECOMMENDATIONS . ................ 182
I. INTRODUCTION

Joseph Birdsong cannot hear the music. On May 19, 2006, as a
representative for his class, he filed a class-action suit against Apple,
claiming that his hearing had been harmed due to his iPod’s “defectively”
high music volume levels.! The suit followed alarming media reports in
early 2006 that Apple Computer’s blockbuster iPod personal music device
could cause hearing damage and even deafness when played at high levels
of volume for long periods of time.> Apple responded quickly to the bad
press. The firm made a new version of the iPod’s internal software
available to its customers, who could easily install the new software free
of charge from the Internet. The improved software allows parents (or any
user) to set limits on how loud the music player’s volume control can be

1. Joseph Birdsong v. Apple Computer, Inc., No. 06-02280 at 11 (N.D. Cal. filed May 19,
2006). The Birdsong amended complaint does not allege that Birdsong or any of the class members
were injured by the device. Rather, the complaint alleges that class members would not have bought
the device in the first place had they been wamed of the risk of hearing damage. Therefore, the
claim would appear to be for economic losses and not for personal injuries. However, this Note
engages in the hypothetical that the suit was founded in a personal injury action.

2. See, e.g., Erika Morphy, IPod User Sues Apple for Potential Hearing Damage, TECH
NEWS WORLD, Feb. 3, 2006, available at http://www.technewsworld.com/story/48666.html?
welcome=1203802395 (“Two weeks ago, the non-profit House Ear Institute launched a consumer
awareness campaign aimed at teens and young adults to highlight the dangers of improper use of
[iPod] earbuds”); Pete Townshend Warns IPod Users, BREITBART.COM, Jan. 4, 2007, available at
http://www breitbart.com/article.php?id= DS8ETS6S00&show_article=1 (“guitarist Pete Townshend
has warned iPod users that they could end up with hearing problems as bad as his own if they don’t
turn down the volume of the music they are listening to on earphones.”); Matthew Erikson, Listen
Carefully, FORT-WORTH STAR-TELEGRAM, Dec. 9, 2007, at D5 (“Public health groups have made
sundry warnings about the perils of listening to iPods at high volume via earbuds™); Crank it Down,
COLUMBUS DISPATCH, 2007 WLNR 14759627, Aug. 1, 2007 (“with the popularity of iPods and
other personal music players, the [hearing loss] problem is likely to get worse [for] children and
teenagers especially”).



2008] DON’T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 127

set.® Still, if Birdsong and his class’s hearing were found to have been
damaged by the iPod’s original internal software, and the software was
found to have been improperly designed (i.e., defective), then the majority
of commentators would extend the strict products liability doctrine to
embedded software like that in the iPod and hold Apple liable for all
damages, regardless of whether Apple had actually been negligent or not.
Presumably, Apple could then seek indemnity from any component
software developer who participated in development or whose software
was used in the iPod. Alternatively, these component software developers
might be jointly liable, regardless of whether the component developer
even knew its code was used in the device.*

The Birdsong case is a herald of things to come. Software is
everywhere. As one looks around a room today, one’s gaze almost
certainly falls on a myriad of electronic products, all powered by complex
electronic software.’ Just to name a few that might be within the reader’s
view right now: cell phones, cordless phones, cable set-top boxes, TiVO,
stereo system, clock radio, digital camera, MP3 player, handheld game,
all-in-one remote, refrigerator, microwave oven, electronic thermostat,
security system, smoke detector, and of course, personal computers. As
computer processors shrink in size, manufacturers find more ways to
include them in otherwise ordinary consumer products, and where a
computer goes, software follows. Automobiles increasingly manage every
driving action from steering to braking through a central computer
system.® Airplanes avoid colliding with each other as a result of complex
software calculations. Many people have an even more intimate
relationship with software: software-driven, life-sustaining medical
devices are implanted in their bodies.” Because software has become such
an intimate part of almost every device we rely on, it is practically certain
that people will be injured and even killed by defectively designed
software.

3. See Christian Toto, Ear Pollution: High Decibels can Damage Hearing, WASH. TIMES,
Sept. 5, 2006, at Bl (stating “[Apple Computer] announced in March a software update for iPod
and related gadgets allowing users to set their own volume limits . . . .”).

4. This is the strict liability standard in several jurisdictions. See infra Part 11.C.

5. See, e.g., John G. Spooner, Embedded Chips Swarming Consumer Goods, CNET
NEWs.COM, Apr. 10, 2001 (indicating that a microprocessor is associated with almost every part
of an automobile, among other electronic products), http://news.com. com/2100-1040-255617.html.

6. Seeid.

7. See, e.g., David Malakoff, Software May Improve Utility of Implants for Deaf, NAT’L
PuUB. RADIO, Oct. 17, 2005 (noting that Duke University researchers use software to make cochlear
hearing implants more suitable for hearing speech and music) (Audio transcript, available at
http://www.npr.org/templates/story/ story.php?storyld=4961269).



128 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

Judges and many legal academics have disagreed about how to resolve
software products liability cases. Almost universally, judges have refused
to apply strict products liability to software, usually by finding that
software is not a “product.”® Almost equally universal, academics have
called for an end to what they perceive as a protectionist era for software
and call instead for the application of strict products liability to the
industry.” Academics contend that: (a) the software industry, featuring
billion-dollar behemoth corporations, is no longer a “fledgling industry”
in need of protection from strict liability;'? (b) the incentives created by
strict liability force software makers to take greater care when designing
their products and thereby make consumers safer;'' and (c) the difficulty
and expense to plaintiffs of proving software defects justifies strict liability
for software, just as it does for other types of mass-market commercial
products.'? These arguments are so common in academic legal literature

8. Usually, courts find that software is a service, not a product, for purposes of tort liability
(although courts have found software to be good under the Uniform Commercial Code (U.C.C.).
See infra text accompanying note 109).

9. For example, the Products Liability Design and Manufacturing Defects database
concludes, “[S]trict liability may be applicable to the seller of off-the-shelf software, and certainly
against the manufacturer of software-controlled equipment[.]” LEWIS BASS, PROD. LIAB.: DESIGN
AND MFG. DEFECTS § 2:18, 4 (2d ed. 2005). See also David G. Owen et al., Publications and
Products Liability, 141 PRODUCTS LIABILITY ADVISORY 1 (Nov. 2000) (stating “the commentators
widely favor the application of products liability theories [for personal injuries caused by defective
software). . . . When defective software proximately results in personal injury, there appears to be
no good reason not to apply normal products liability principles.”). See also Frances E. Zollers et
al., No More Soft Landings for Software: Liability for Defects in an Industry That Has Come of
Age, 21 SANTA CLARA COMPUTER & HIGH TECH. L.J. 745, 771 (2005) (noting “We are unmoved
by the argument that imposing strict liability will stifle innovation, especially because we are
focusing on a segment of the industry—sofiware that foreseeably causes physical harm when
defective—rather than the entire software industry.”).

10. See, e.g., Zollers et al., supra note 9, at 746.

[T]he software industry is no longer in its infancy. Its development has moved out
of garages and into corporate offices. It has matured to become a dominant sector
of the economy. Consequently, it is appropriate to consider liability for defective
software in the same light as liability for defective automobiles, pharmaceuticals,
and other products.

See also id. at 756 (remarking “the [software] industry is in a position to and should be made to
absorb the cost of harm occasioned by defects.”).

11. Seeid. at 770 (explaining “astrict liability standard increases the liability ex ante and will
. . . [iIncrease the incentives to manufacture and distribute [software] without defects that cause
harm.”).

12. See id. at 782 (reasoning “it [is] sound public policy to have a strict liability regime [for
plaintiffs] . . . , rather than putting injured parties to the task of proving negligence.”).



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 129

that they have been noted in the Restatement (Third) of Torts: Products
Liability."

This Note challenges academic orthodoxy and presents six reasons to
exempt software from the doctrine of strict products liability. In Part II,
this Note considers the history of strict products liability, the policy
rationales undergirding the doctrine, and the legal background of tort
liability as applied to software. Part IIl demonstrates why the policies do
not make sense when applied to software. Two special considerations are
discussed: liability for the “stack” (component software supplier liability),
and the reasons why, for purposes of tort liability, embedded software
should be analyzed as distinct from the rest of the device in which it is
embedded, and no differently than any other non-embedded category of
software. Part IV briefly describes each of the commonplace alternative
theories for recovery that may be available to plaintiffs injured by
commercial mass-market products containing defective software. Finally,
Part V concludes with a recommendation for courts and legislatures.

I1. HISTORY AND POLICY RATIONALES FOR STRICT
PRODUCTS LIABILITY

Until the 1950s, the tort doctrine of strict or absolute liability was
reserved for a narrow range of concerns like ultra-hazardous activities,'*
the keeping of wild animals, and the distribution of adulterated foods."
Strict liability is liability without fault; even if a person exercises
reasonable care (or even superlative care), he remains liable for injuries
caused as a result of his activity. So it is that a manufacturer of blasting
caps can be held liable when children are injured, but a specific maker of
the cap is not proven or even known. '

13. RESTATEMENT (THIRD) OF PRODUCTS LIABILITY § 19 cmt. d (1998) (noting “for purposes
of strict products liability in tort[,] . . . . [nJumerous commentators have discussed the issue and
urged that software should be treated as a product.”).

14. Fletcher v. Rylands is the famous case that establishes absolute liability for ultra-
hazardous activities. Fletcher v. Rylands, 1 L.R.-Ex. 265, 266 (1866).

15. See MacPherson v. Buick Motor Co., 217 N.Y. 382, 389 (1916) (removing privity
requirement from duty for negligence; authored by Justice Benjamin Cardozo).

16. SeeHall v. E. 1. DuPont de Nemours & Co., Inc., 345 F. Supp. 353,372 (E.D.N.U. 1972)
(holding that all makers of blasting caps were liable for injuries to children when no particular
maker could be identified). See also Pittsburg Reduction Co. v. Horton, 113 S.W. 647 (Ark. 1908).
A ten year old boy found discarded blasting caps and carried them home. Id. at 648. His father,
familiar with blasting caps, saw him playing with them, but did not take them away from the boy.
Id. About one week later, the boy carried them to school and traded them to a classmate. Id. But



130 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

A key 1963 decision' triggered the rapid extension of strict tort
liability to product manufacturers for personal injuries (generally to
consumers) caused by defective products. Strict products liability is the
most controversial application of strict liability.'® Part of the controversy
undoubtedly arises because strict liability violates the core tort principle
that liability should be based on fault, and results derived from application
of absolute liability sometimes challenge fundamental notions of justice
and fair play. The doctrine has produced harsh results at times, and tort
reform efforts have focused more on narrowing the strict products liability
doctrine than on any other area.'

This section presents a brief history of the development of and the
major rationales for the modern strict products liability doctrine. The
background explains why strict products liability should not be applied to
software.

A. A Brief History of the Doctrine of Strict Product Liability

“It is to the public interest to discourage the marketing of products
having defects that are a menace to the public.”?® While the strict products
liability doctrine has roots in implied warranties of contract, Justice Roger
Traynor first recognized the doctrine in his famous concurrence® in the
case of Escola v. Coca Cola Bottling Company.* Traynor advocated
extending the existing doctrine of strict liability for adulterated food
products to all manufactured products. He cited the manufacturer’s ethical
responsibility to exercise control that the consumer lacks, the “risk
spreading” ability of the manufacturer to pass the cost of insuring against

for the parents’ having known of the danger and having allowed the boy to keep the caps, the
manufacturer would have been held strictly liable when injuries occurred. Id. at 649.

17. Greenman v. Yuba Power Prod., Inc., 377 P.2d 897, 900 (Cal. 1963).

18. See RICHARD A. POSNER, ECONOMIC ANALYSIS OF LAW 182 (6th ed. 2003) (explaining
“The most controversial area of strict liability today is liability, now called strict in most states, for
personal injuries (mainly to consumers) caused by defective or unreasonably dangerous products.”).

19. The significance oftort reform in this area is perhaps best exemplified by having received
its own Restatement. The 1998 publication of the Restatement (Third) of Torts: Products Liability
“largely abandons the doctrine of ‘strict’ products liability for design and warnings cases, which
comprise the bulk of products liability litigation.” DAVID G. OWEN, PRODUCTS LIABILITY LAW 248
(2005). See also Kathy Gill, Tort Reform-State Recap, ABOUT.COM, Feb. 10, 2005, http://
uspolitics.about.com/od/healthcare/a/01_tort_reform.htm.

20. Escola v. Coca Cola Bottling Co., 150 P.2d 436, 440-41 (Cal. 1944) (Traynor, J.,
concurring).

21. Owen calls Justice Traynor’s concurrence in Escola “perhaps the most renowned
concurring opinion in all of American tort law . . . .” OWEN, supra note 19, at 253.

22. Escola, 150 P.2d at 436.



2008] DON’T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 131

liability along to consumers of the product, and the social interest in
driving unsafe goods from the market:

It is evident that the manufacturer can anticipate some hazards and
guard against the recurrence of others, as the public cannot. Those
who suffer injury from defective products are unprepared to meet
its consequences. The cost of an injury and the loss of time or
health may be an overwhelming misfortune to the person injured,
and a needless one, for the risk of injury can be insured by the
manufacturer and distributed among the public as a cost of doing
business. It is to the public interest to discourage the marketing of
products having defects that are a menace to the public.?

It is significant that the defective product in Escola was a glass bottle,
one of perhaps millions of identical units stamped out in an opaque,
repetitive, and highly automated manufacturing process. In such a context,
the difficulties facing plaintiffs attempting to prove negligence are
manifest, the ability of the manufacturer to “spread” liability is at its
pinnacle,®* and the policy arguments for strict products liability are
therefore at their strongest. The last sentence quoted above is also
noteworthy: here, at the very genesis of the strict products liability
doctrine, Traynor reasoned that defectively dangerous products should be
driven from the market altogether—presumably under the heavy burden
of strict liability.

Over the next decade and a half, the Escola concurrence proved
persuasive, and in 1961, the American Law Institute (A.L.I.) adopted a
draft rule recognizing strict liability for sellers of food products. Over the
next few years, the draft was amended several times to include other
products that were considered to be similar to food products. In 1963, the
California Supreme Court decided the landmark case of Greenman v. Yuba
Power Products™ and extended strict tort liability to a power tool
manufacturer (i.e., beyond the realm of food and “personal” items). The
A.L.L responded in 1964 through a new draft of section 402A of the
Restatement (Second) of Torts, extending strict products liability to any

23. Id. at 440-41 (Traynor, J., concurring).

24. Coca-Cola is a sophisticated, established business well able to actuarially calculate the
costs of potential liability for injuries and to easily distribute those costs into a small fraction of the
price of each of the millions of units sold.

25. Greenman v. Yuba Power Prod., Inc., 377 P.2d 897, 901 (Cal. 1963) (explaining that a
man injured by a shop saw, which his wife purchased for him, may recover for his injuries based
on reasonable expectation of safety even without privity).



132 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY {Vol. 19

commercial manufacturer of a defective product.?® Within just twelve
years, forty-one states had adopted the section, frequently citing Greenman
as a seminal case and citing the widespread influence of Traynor’s
concurrence in Escola.”’

Due to section 402A’s roots in food product safety, a doctrine founded
on an implied warranty rationale,® the Restatement (Second) defined
defectiveness not in terms of any particular feature of the product but as
any product quality which defeats a consumer’s reasonable expectation of
safety—the so-called “consumer expectations test.”” This test premises
tort liability on the idea that a defectively dangerous product defeats the
consumer’s reasonable expectation that the product is safe for ordinary
use. Section 402A is widely recognized as one of the most influential
sections in any Restatement, and its influence has swept beyond the
borders of the United States.*

The Restatement (Second) section 402A is a victim of its own success.
Beginning in the 1970s, manufacturers and insurers began to push back
against the growing tide of products liability litigation. A successful
reform movement arose,”’ fueled in part by an intrinsic ambiguity
bedeviling the otherwise popular consumer expectations test. For example,
it could be possible that consumers simply expect a power saw to be
dangerous to use. If so, what are the reasonable expectations for safety for
such a product? The inherent ambiguity of the test allows judges and juries
to reach almost any conclusion on the same facts and fails to provide much
guidance.*

26. RESTATEMENT (SECOND) OF TORTS § 402A (1965).
27. See MARK A. GEISTFELD, PRINCIPLES OF PRODUCTS LIABILITY 16 (2006).
28. See RESTATEMENT (SECOND) OF TORTS § 402A, cmt. f(1965).

The basis for the rule is the ancient one of the special responsibility for the safety
of the public undertaken by one who enters into the business of supplying human
beings with products which may endanger the safety oftheir persons and property,
and the forced reliance upon that undertaking on the part of those who purchase
such goods.

Id.

29. See id. cmt. g. (explaining that strict liability “applies only where the [defective] product
is, at the time it leaves the seller’s hands, in a condition not contemplated by the ultimate consumer,
which will be unreasonably dangerous to him.”).

30. It has heavily influenced legislation in the European Economic Community and Japan,
among others. GEISTFELD, supra note 27, at 18.

31. See OWEN, supra note 19, at 24-25.

32. Seeid. at 299 (citing PROSSER & KEETON ON TORTS § 99, at 698 (footnote omitted)).



2008] DON’T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 133

Authorities and commentators have found that this flexibility makes the
test reflect a standard more like ordinary negligence than true strict
liability because plaintiffs (by way of consumer “expectations”) must
persuade the jury that the manufacturer acted unreasonably in order to
obtain a favorable verdict.> Others feel the flexibility makes the consumer
expectations test pro-consumer.>* Still others suggest that the consumer
expectations test is fully analogous to the newer test for product defects
found in the Restatement (Third) of Torts: Products Liability, which
gained favor in some jurisdictions as a replacement for the consumer
expectations test.*

In 1998, the A.LI published the Restatement (Third) of Torts:
Products Liability, giving the products liability doctrine its very own
Restatement. This new Restatement arrived in the midst of the political
and legislative tort reform movement. The new Restatement explicitly
rejects the consumer-expectations test’® and instead adopts a risk-utility
test, which requires a plaintiff to prove the existence of an alternative
reasonable design (or warning) to establish that a product is defective. This
test balances the manufacturer’s reasonable efforts at achieving product
safety against the cost of discovering and preventing certain injuries. The
risk-utility test looks like ordinary non-strict negligence because it requires
a manufacturer to exercise reasonable care when selecting a product design
(and by definition to avoid unreasonably unsafe designs).

The current status of products liability generally, and strict products
liability particularly, is in flux, subject to change, and somewhat
confusing.’” However, if a trend can be described at all, it is that tort law
seems to be narrowing rather than extending the liability of
manufacturers.®® So it is puzzling that commentators continue to advocate
for a major expansion of the harshest form of products liability—strict

33. See OWEN, supranote 19, at299-301 (discussing how the consumer expectations test has
become ambiguous and difficult to apply; reasonable expectations of consumers similar to
principles relied upon to establish liability in non-strict liability cases).

34. See, e.g., Halliday v. Sturm, Ruger & Co., Inc., 792 A 2d 1145, 1154 (Md. 2002) (finding
the Restatement (Second) to be an important pro-consumer advance and rejecting the Restatement
(Third)’s risk-utility test as a retrogression).

35. See James A. Henderson, Jr. & Aaron D. Twerski, Achieving Consensus on Defective
Product Design, 83 CORNELL L. REV. 867, 872 (1998).

36. See RESTATEMENT (THIRD) § 2 cmt. g (1998) (noting that consumer expectations are not
determinative of tort liability for design and warning defects).

37. See Henderson & Twerski, supra note 35, at 871 (stating “the rhetoric of products
liability law is, undeniably, a mess.”).

38. For a more complete discussion of the tort reform movement, see OWEN, supra note 19,
at 24-25.



134 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

products liability—into the previously untouched realm of computer
software, a peculiar result at odds with the legal development of law in this
important area. It is unclear why these commentators wish to leapfrog the
non-strict forms of products liability and to jump directly to the most
onerous form of the doctrine.

B. The Policy Rationales for Strict Products Liability

The rationales for imposing strict liability for commercial products take
two forms. The first is a set of moral arguments, based on fairness,
positing that manufacturers are ethically responsible to innocent
consumers who have been harmed because the consumers had a reasonable
expectation that the manufacturer would supply a safe product.’® The
second group of rationales is based on economic arguments or efficiency.*
For example, it is argued that manufacturers are best able to insure against
losses and to spread the cost of such insurance among all the consumers
who purchase their products, and that strict liability creates socially
desirable economic incentives for manufacturers to produce safer products.
As discussed below, these traditional policy rationales are not a good fit
in the area of commercial computer software.

The idea that manufacturers are ethically required to be the gatekeepers
of consumer safety is fundamental to tort-based products liability.
Manufacturer attention to safety is seen as a moral imperative due to the
inherent inequality of the relative positions of power held by manufacturer
and consumer and the manufacturers’ ability to control circumstances that
the consumer cannot:

Manufacturers have much greater control over product safety
than consumers in many ways: the manufacturer, not the consumer,
conceives and determines the balance of utility and safety in the
product; the manufacturer alone determines how much quality
control to use to prevent and screen out errors in production; the
manufacturer has practical access to far greater safety information
than consumers, and it alone determines how much and in what
manner to share such information with the consumers who need it;
and the manufacturer alone decides what promises about product

39. See David G. Owen, The Moral Foundations of Products Liability Law: Toward First
Principles, 68 NOTRE DAME L. REV. 427, 468-69 (1993) (ethically, manufacturers owe a
paternalistic duty to potential accident victims who are entitled to a fair measure of product safety).

40. Id. at 457 (the principles of utility and efficiency seek to deter accident-producing
conduct that is on balance wasteful for society).



2008] DON’T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 135

safety to make to consumers to induce them to buy the product. In
sum, the manufacturer’s initial power over product safety—risk
control—is enormous; by comparison, the consumer’s initial
control of product risk is almost trivial. Thus, there is a gross
inequality in the initial distribution of risk control between the
maker and the user.*

This moral argument portrays manufacturers as faceless entities with deep
pockets and consumers as completely dependant on manufacturers to
disclose potential product dangers. This scenario describes Escola
perfectly, where consumers reasonably relied, without thinking, on a giant
bottling company to produce a safe product. Presumably Coca-Cola wields
sufficient market power to control every aspect of the manufacture and
distribution of its cola product, if it so chooses, and can therefore be
efficiently motivated by threat of liability to exercise such control through
its contracts with its distributors and retailers. This rationale is not as
compelling, however, in the case of manufacturers: (1) who produce
socially desirable products that cannot, through reasonable effort be made
any safer; (2) who face risks that are unforeseeable; (3) who wield
significantly less market power than does Coca-Cola; or (4) who may not
have any ability to dictate how their products are handled after being
released into the stream of commerce.

The case of Lechuga v. Montgomery is frequently cited® for its
enumeration of the policy justifications for strict products liability.* Some

41. Id. at452.

42. Westlaw returns 68 citing references (as of Sept. 2007).

43. Lechuga, Inc. v. Montgomery, 467 P.2d 256, 261-62 (Ariz. Ct. App. 1970) (Jacobson,
J., concurring) (stating that lessors of automobiles are just as strictly liable for product injuries as
is the original manufacturer). The Restatement (Third) of Torts also enumerates seven policy
rationales that justify imposition of strict products liability. The Restatement (Third) factors are
more general than the Lechuga factors, and they are also well-represented by Lechuga. The
Restatement (Third) factors are as follows:

(1) the public interest in life and health; (2) the invitations and solicitations of the
manufacturer to purchase the product; (3) the justice of imposing the loss on the
manufacturer who created the risk and reaped the profit; (4) the superior ability
of the commercial enterprise to distribute the risk of injury as a cost of doing
business; (5) the disparity in position and bargaining power that forces the
consumer to depend entirely on the manufacturer; (6) the difficulty in requiring
the injured party to trace back along the channel of trade to the source of the
defect in order to prove negligence; and (7) whether the product is in the stream
of commerce.



136 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

of the justifications are as follows:

(1) The manufacturer can anticipate some hazards and guard against
their recurrence, which the consumer cannot do.

(2) The cost of injury may be overwhelming to the person injured
while the risk of injury can be insured by the manufacturer and
be distributed among the public as a cost of doing business [(i..,
risk spreading)].

(3)It is in the public interest to discourage the marketing of
defective products.

(4) It is in the public interest to place responsibility for injury upon
the manufacturer who was responsible for its reaching the
market.

(5) That this responsibility should also be placed upon the retailer
and wholesaler of the defective product in order that they may
act as the conduit through which liability may flow to reach the
manufacturer, where ultimate responsibility lies.

(6) That because of the complexity of present-day manufacturing
processes and their secretiveness, the ability to prove negligent
conduct by the injured plaintiff is almost impossible.*

The first policy argument expresses the socially desirable objective that
tort law should create economic incentives for manufacturers to design
safe products. Implicit in this objective is the notion that (a) the particular
risks are foreseeable, and (b) the products can be made safe, that is, they
are not unavoidably unsafe. Automobiles are commonly cited as an

RESTATEMENT (THIRD) OF TORTS § 19 cmt. a, n (1998).

44. Lechuga,467P.2d at261-62 (internal citations omitted). The seventh and eighth Lechuga
rationales rely on decisions extending strict tort products liability by analogy to non-personal
injuries to chattels, so called “economic losses.” These cases are questionable law. For the
interested reader, the last two rationales are as follows: (7) “the consumer does not have the ability
to investigate for himselfthe soundness of the product,” and (8) “the consumer’s vigilance has been
lulled by advertising, marketing devices, and trademarks.” Santor v. A & M Karagheusian, Inc.,
207 A.2d 305, 311 (N.J. 1965) (extending strict products liability to a case where a man purchased
a carpet inferior to what he was promised); Nalbandian v. Byron Jackson Pumps, Inc., 399 P.2d
681, 681 (Ariz. 1965) (extending strict liability to a pump manufacturer who sold a defective pump
and property damage resulted). Both cases analogize the contract warranty of fitness of purpose to
encompass strict tort product liability for non-personal injuries. Lechuga, 467 P.2d at 261-62. Since
1965, many courts, including the U.S. Supreme Court, have rescued contract law from tort law by
reaffirming the economic loss rule, which would forbid such verdicts. See E. River S.S. Corp. v.
Transamerica Delaval, Inc., 476 U.S. 858, 867 (1986) (adopting as part of admiralty law the
“economic loss” rule, which denies the purchaser of a defective product a tort action against the
seller or manufacturer for purely economic losses sustained as a result of the product’s failure).



2008) DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 137

example of a product category that has become much safer because of the
pressure created by potential strict products liability.

But in the case of software, as with any disruptive new technology, the
potential risks are not always obvious or foreseeable.* The cost to the
manufacturer of acquiring the knowledge of risks must be efficient, i.e.,
economically reasonable. Thus, there is a point of diminishing returns
where the costs of excessive testing for defects makes a product
unmarketable.

The second policy argument requires an examination of the “state of
the art”: could the manufacturer have cost-effectively designed a safer
product? If it is not cost-effective for the manufacturer to design a safer
product, then the alternatives are for consumers to live with the risk or for
the product to be removed from the market altogether. In the case of
software, it is well known that software defects (bugs) are ubiquitous and
possibly unavoidable.*s If particular risks of injury from software are
unforeseeable, and if current software technology is unavoidably unsafe,
then the economic incentives posed by strict liability cannot rationally
affect software producers’ behavior. Imposing strict products liability
might therefore over-deter software producers to the detriment of society
which would lose access to socially desirable software products.

The second and third policy arguments are economic in nature: (1) the
manufacturer can afford the cost of injury more than can the consumer
can, and (2) it maximizes social utility to discourage potentially injurious
defective products. This is the risk-spreading rationale, encompassing the
body of Traynor’s economic arguments in Escola.”” Under these
arguments, two assumptions must be met before the externality of strict
liability can be efficiently imposed on a market. First, a mature market for
a product must exist, one which is sufficiently sophisticated to actuarially
calculate the cost of potential liability and include it in the product price,
thereby distributing it among all consumers of the product.” Insurance
sellers will not provide coverage to a manufacturer if such actuarial
calculations cannot be made.* It seems obvious that, in order to obtain the

45. This Note discusses unavoidably unsafe products at length. Infra Part IILE.

46. See, e.g., THOMAS J. CARTIN, PRINCIPLES AND PRACTICES OF ORGANIZATIONAL
PERFORMANCE EXCELLENCE 61 (1999) (stating it is “a generally accepted fact that all software
programs, when used, will contain bugs.”).

47. Escola v. Coca Cola Bottling Co., 150 P.2d 436, 440-41 (Cal. 1944) (Traynor, J.,
concurring).

48. See GEISTFELD, supra note 27, at 154-55 (discussing types of products having the
“actuarial characteristics™ necessary for insurability).

49. Seeid.



138 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

data needed to make these calculations, the industry must have existed for
long enough that there are a sufficient number of similar competitive
products against which the instant product’s design can be compared.
Second, for strict liability to make sense, the net social cost of potentially
uncompensated injuries plus society’s desire to discourage the industry
must exceed the sum of the excess benefits obtained by society from the
industry plus society’s desire to protect or nurture the market.*® Society has
encouraged socially desirable markets via protection from the most
onerous forms of tort liability. In spite of what the proponents of strict
products liability for software would argue, the software industry is too
immature to afford strict products liability in tort and risks being over-
deterred.”! If the ubiquitous incorporation of software into almost every
conceivable product benefits society in excess of the costs, including the
cost of uncompensated injury, then this rationale must be discounted in
favor of software producers.

The fourth policy argument is that the public interest requires placing
liability for injury on the manufacturer who was responsible for creating
the product that will eventually reach the market. In the software market,
particularly embedded software,* it may be difficult, if not impossible, to
identify which developer should be liable. Holding all participating
developers liable raises the spectre of uncontrolled absolute liability.
Furthermore, many software components are non-commercial in nature.”
Non-commercial activities have generally been held outside tort and
warranty strict liability,> further complicating the analysis.

The insurability of a risk depends on the quality of data regarding the probability
and the severity of loss. [While] {i]nsurers usually do not have difficulty collecting
such data for construction or manufacturing defects . . . . [u]nforseeable risks pose
a hard actuarial problem, making the provision of insurance much more difficult,
if not impossible.

Id

50. Expressed algorithmically: (PLu + S--) > (Ue + S++), where PLu is the probability and
extent of uncompensated injury, S-- is the extent to which society disapproves of the product (i.e.,
“sin products”), Ue is the excess benefit or “utility” obtained by society over and above the actual
cost of the product to consumers, and S++ is the extent to which society wishes to encourage the
industry’s growth.

51. Infra Part I1L.E.3 (developing the argument more fully).

52. Infra Part II1.B (defining and discussing embedded software that is part of the “stack™).

53. Non-commercial component include free and open-source software, in particular.

54. Forexample, the Restatement (Second) of Torts section 402A(1) begins “[o]ne who sells
any product . . . .” Therefore, under section 402A, there is no liability without a “sale” (i.e.,
commerce).



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 139

Finally, this argument turns a manufacturer into an insurer. The idea is
that it is more equitable for the product manufacturer, who stood to benefit
from the sale of the product, to be responsible for the cost of injuries
resulting from that commercial activity. This is efficient as long as (a) the
manufacturer can afford to purchase insurance or to self-insure, and (b)
insurance is available to the manufacturer. As discussed further in Part
II1.D.3, the vast majority of contemporary software developers are small
firms or individuals. Additionally, liability insurance is likely to be
unavailable or abnormally expensive due to the immaturity of the software
industry. Inasmuch as placing liability on software producers is therefore
likely to over-deter socially desirable products, it would be inefficient for
society to do so.

The fifth Lechuga policy argument is that retailers and distributors
should share liability for products subject to strict liability. In addition to
manufacturers, retailers and other non-manufacturing participants in the
stream of commerce may also be strictly liable for defective products.*”
While the trend seems to move toward limiting this extension of strict
liability to the original manufacturer, most jurisdictions still recognize this
form of broad strict liability. Even in jurisdictions that have implemented
tort reform in this area, retailers and distributors may still be reachable
even without fault when the original product manufacturer is unreachable®
or insolvent.”” In the case of software, it seems self-evident that holding
distribution participants such as Internet Service Providers (ISPs) strictly
liable for injuries caused by defective software is a luxury that society
cannot currently afford.*®

The sixth policy argument is perhaps the most common in the literature
discussing strict products liability. Some plaintiffs will find it extremely
difficult to prove causation in cases involving complicated products.
Consequently, strict liability works like a form of res ipsa loquitor,

55. See OWEN, supra note 19, at 958-61.

56. See, e.g.,Malone v.Schapun, Inc., 965 S.W.2d 177, 185-86 (Mo. Ct. App. 1997) (holding
the “innocent seller statute” did not apply to retailer when the court had no jurisdiction over
manufacturer and distributor because the plaintiff had earlier settled with them).

57. See, e.g., Marcon v. Kmart Corp., 573 N.W.2d 728, 730 (Minn. Ct. App. 1998) (finding
0% liability assigned to the retailer and 100% to the manufacturer; however, the retailer was held
strictly liable when the court found that the manufacturer was bankrupt).

58. For example, consumers can download replacement software for their iPod which is not
from Apple. Suppose this software played music too loud and damaged hearing. The original
“manufacturer” is in reality a group of one or more hobbyists and not a commercial enterprise able
to self-insure against tort judgments. Should the innocent plaintiff then have recourse against the
ISP (i.e., analogizing the ISP to a fault-free retailer)? See iPodLinux Project, Main Page,
http://ipodlinux.org/Main_Page (last visited Sept. 18, 2007).



140 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

relieving the plaintiff of the burden of proving how or when negligence
occurred.® But, as we shall see in Part II.C, this rationale is most
persuasive when considered in the context of manufacturing defects, and
not as persuasive when it comes to design or warning defects. It is true that
modern software is astonishingly complex.® Still, the process of creating
software has no analogue to a traditional manufacturing process, and
software defects do not appear in “one in a million” configurations which
occur in cola bottles. Finally, in spite of the technical complexity of
software, it is not a foregone conclusion that proof of negligence is
impossible or even necessarily very difficult.®"

C. The Legal Background of Software and Tort Law

There is very little law on tort liability for software and even less in the
area of software products liability. The Second and Third Restatements of
Torts offer guidance that is at best ambiguous and at worst conflicting. To
the extent that software can be considered a “good,” the Uniform
Commercial Code (U.C.C.)* lends product warranty law to the discussion.
Available case law discussing losses caused by software has focused
primarily on economic damages and has applied ordinary negligence
principles, generally casting software as a service.*’ Proponents of strict

59. “One argument favoring strict liability is that the unavailability of evidence in some cases
renders the plaintiff unable to establish what may well have been the defendant’s actual
negligence.” RESTATEMENT (THIRD) OF TORTS § 17 cmt. a (2005).

60. See Uniform Computer Information Transactions Act (UCITA) (2002) § 403 cmt. 3a
(2002) [hereinafter UCITA] (“[software can contain] over ten million [interoperating] lines of code
or instructions . . . . [c]ontrasted with a commercial jet airliner that contain(s only] approximately
six million parts. . . .”).

61. Supra Part 1V.G (discussing the evidentiary issue in more detail). One interesting
development in the software community is a form of unsolicited peer review. So called “white hat
hackers” spend their time testing software and publicly reporting potential security flaws. See
Wikipedia, White Hat, http://en.wikipedia.org/wiki/White_hat (defining a white hat hacker) (as of
Sept. 18,2007, 13:50 EST). Itis not difficult to imagine that, as software with the potential to cause
human injury becomes even more ubiquitous, similar community-based peer review may assist
plaintiffs with discovery of defects.

62. There have been attempts to codify the law of software under the U.C.C. in what was first
called U.C.C. Article 2b, but which later became the UCITA.

63. If software is a service, then ordinary negligence applies. In many cases, courts have
avoided the issue of whether software can give rise to a negligence claim by focusing not on the
product but rather on the installation and services provided by the software vendor. See, e.g., Data
Processing Servs. Inc. v. L.H. Smith Oil Corp., 492 N.E.2d 314 (Ind. Ct. App. 1986); Micro-
Managers, Inc. v. Gregory, 434 N.\W.2d 97 (Wis. Ct. App. 1988); see also Note, Computer
Software as a Good Under the Uniform Commercial Code: Taking a Byte Out of the Intangibility



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 141

products liability would prefer courts to consider software as a product,
bringing products liability law into play. The battle therefore begins with
the question of what is software: service, good, product, intellectual
property, or something else?

The issue of whether tort law considers software to be a product is the
threshold question for establishing whether products liability exists. If
software is not a product, then the strict products liability doctrine simply
does not apply. The distinction is critical: if software is considered a
service (and not a product), then established law requires that only
ordinary negligence applies and plaintiffs must prove fault.* It is not
surprising, therefore, that there has been substantial advocacy in the
literature for commercial mass-market software to be considered a product
under tort law.®® This section considers how the law defines a “product”
and whether that definition can be extended to computer software.

But what is software? One cannot touch it, see it, smell it, or taste it.
One cannot move it upstairs, downstairs, across the street, or even across
a desk. Yet, it can travel the globe in an instant. One cannot put it in one’s
hand, a box, or a truck. It takes up no space whatsoever, but it can have
more parts than a 747 jetliner.®® There is neither manufacturing lead time
nor any raw materials needed to create it; numerous copies of software can
be made instantly for no additional cost based on need. Unlike other
manufactured products, software is capable of reproducing itself.’
Software is created using programming languages (i.e. words). A
programmer at work is indistinguishable from a novelist at work. Like a
written novel, a software program is wholly the product of the human

Myth, 65 B.U. L. REV. 129 (1985); Comment, The Warranty of Merchantability and Computer
Software Contracts: A Square Peg Won't Fit in a Round Hole, 59 WASH. L. REV. 511 (1984).

64. See RESTATEMENT (THIRD) OF TORTS § 19 cmt. a (1998) (stating “[o]nce the era of strict
products liability in tort arrived in the early 1960s, liability turned primarily on whether what the
defendant distributed was, or was not, a product.”). The reporters’ note discussing the section states
that “only when the complained-of injury was allegedly caused by a defect in something within this
Section’s definition of ‘product’ should the defendant manufacturer or seller be strictly liable for
the harm caused.” /d. cmts. a, n.

65. There seems to be nearly universal agreement that software designed on specification for
a single customer is a service, not a product. This is an interesting conclusion; however, if software
is a service when provided to one customer, what about its nature changes when it is later provided
to many other customers so that it is then a product? It would seem the mass-market distinction is
not so much about any intrinsic quality of the software at all, but rather only about policy objectives
when more customers could potentially be at risk. For a full discussion, see RESTATEMENT (THIRD)
OF TORTS § 19 cmt. d (software that was developed specifically for a customer is a service).

66. See UCITA, supra note 60, § 403 cmt. 3a (noting that modern software is more complex
than a commercial airliner).

67. Such software is commonly known as a virus.



142 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

mind. If software is stolen, the original owner might not even notice and
will continue to enjoy its use. If programmer does notice, recourse is
available under copyright law, which also protects the novelist’s work. It
is no wonder that the distinction over whether software is a good, a
product, a service, or something else has given the legal community fits
since the introduction of the first commercial software product. Software
is a gossamer ship on an ethereal ocean.

Existing case law supports the conclusion that software is not a
product. Diligent investigation has revealed no cases where judges have
held that software was a product for purposes of tort products liability.5
The Restatement (Third) concludes the same, stating in the section 19
comments that “[regarding products liability for software,] there are no
cases on point on the facts.”® It is significant that judges, when
considering the facts of the cases before them, have so far held the line and
refused to find tort product status for software.” Still, several cases are
repeatedly cited in the literature as “pre-cursors” for software products
liability.

A series of cases against aeronautical chart makers’' established that a
printed flight map can be a “product” subject to strict liability.”” In detna
Casualty & Surety Co. v. Jeppesen & Co., a plane crashed on the landing
approach when the pilots relied on a Jeppesen & Co. chart. The chart was
defective because it featured an illustration not drawn to the same scale as
all other Jeppesen charts. An expert witness testified that the pilots could
have been cognitively confused by the use of the non-standard scale. The
court found Jeppesen strictly liable, relying on the products liability
section of the Restatement (Second) of Torts section 402A.7

This case, and a series of aeronautical chart cases which followed,
figure prominently in the argument for software strict liability for two
reasons. First, proponents analogize aeronautical charts to software: both

68. See Owen et al., supra note 9 (stating “While the commentators widely favor the
application of products liability theories [to software], the case law is nonexistent.”).

69. See RESTATEMENT (THIRD) OF TORTS § 19 cmt. d (1998).

70. See, e.g., James v. Meow Media, Inc., 90 F. Supp. 2d 798, 818 (W.D. Ky. 2000)
(analyzing video game negligence as a speech issue under the First Amendment).

71. For a thorough discussion of the Jeppesen series of cases (and other similar cases), see
David L. Abney, Liability for Defective Aeronautical Charts, 52 J. AR L. & CoM. 323 (1986).

72. See Aetna Cas. & Sur. Co. v. Jeppesen & Co., 642 F.2d 339, 341-43 (9th Cir. 1981).
Subsequent cases established that the Ninth Circuit really meant “strict”; in one case, Jeppesen
merely reprinted publicly available FAA data which turned out to be inaccurate, and the court still
held him liable. Brocklesby v. United States, 767 F.2d 1288, 1295 (9th Cir. 1985).

73. See Jeppesen, 642 F.2d at 343; see also RESTATEMENT (SECOND) OF TORTS § 402A
(1965).



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 143

are purely functional, intangible, not implicative of the First Amendment,
and historically not considered “products.” Second, an interesting case
from the Ninth Circuit, in dicta, drew an analogy between aeronautical
charts (subject to strict products liability) and defective computer
software.”

This dicta emerged from Winter v. G.P. Putham’s Sons'®—not an
aeronautical chart case but a so-called “information” case. In Winter,
mushroom enthusiasts were badly poisoned’ after relying on an inaccurate
guide book and sued the book publisher under a strict products liability
theory. The plaintiffs argued that strict liability should apply to books that
provide instruction for inherently dangerous activities, or in the alternative,
that the mushroom guide was analogous to aeronautical charts because it
was intended for use while engaging in a hazardous activity like flying an
airplane.” The circuit court found the plaintiff’s strict liability argument
unpersuasive and “decline[d] to expand products liability law to embrace
the ideas and expressions in a book.”” But, in a remarkable bit of dictum,
the court drew a mild analogy between defective computer software and
aeronautical charts. The court noted that “[c]Jomputer software that fails to
yield the result for which it was designed may be [analogous to
aeronautical charts].”®

This lukewarm comment has fertilized a substantial and vigorous crop
of theories under which software would be recognized as a product for
strict liability purposes. Most commonly, the theorists argue that the
Winter court meant that software, like the charts at issue in the
aeronautical cases, are “information” products. Others would go further
and rely on the dictum for the proposition that the court meant that
software, like the charts in the cited cases, should be subject to strict
products liability.®!

In spite of its popularity in law reviews, Winter ultimately has been a
disappointment to proponents of strict products liability for software for
three reasons. First, the facts in Winter are unusual and the dicta
analogizing software to aeronautical maps is so attenuated that it seems

74. See Zollers et al., supra note 9, at 763-64.

75. Winter v. G.P. Putnam’s Sons, 938 F.2d 1033 (9th Cir. 1991).

76. Id. at 1036.

77. As a result of their culinary misadventure, both plaintiffs became critically ill and had
required liver transplants. /d. at 1033.

78. Id. at 1035-36.

79. Id. at 1036.

80. Id.

81. The argument is so popular that it is recognized in the Restatement (Third) of Torts.
RESTATEMENT (THIRD) OF TORTS § 19 cmt. d (1998).



144 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

almost an afterthought. Second, in the sixteen years since Winter, no
reported case, including in the Ninth Circuit, has undertaken to follow,
enhance, or expand upon the Winter court’s dicta. Finally, the Winter court
never explained its proposed analogy between aeronautical charts and
software. Perhaps in 1991, the Winter court thought about flight mapping
software of the sort Jeppesen®’ currently sells rather than software
categorically when it made the analogy.® In any case, the amazing panoply
of software today bears little resemblance to a laminated card with a map
and chart printed on it. A laminated chart is designed to keep pilots’
critical information close at hand for their direct use. Conversely, the
software driver in an iPod is designed to translate digital audio information
and relay it to the sound hardware—all behind the scenes without any
human participation. Beyond noting that both items are “functional,”
which is far too broad a measure for comparison—a hammer is functional,
it seems difficult to identify any closer similarities. At best, Winter is an
ambivalent “precursor” to strict liability for software. Lacking any new
legal development in the sixteen years since Winter, and considering the
substantial changes in the technological landscape since that time, the dicta
may be destined to fade into obscurity.

The Restatements of Torts have done little to clarify the status of
software as either software or product. The Second and Third
Restatements of Torts largely conflict regarding their respective
definitions of “product” for products liability purposes, and the difference
is particularly stark in the case of software.® Still, both Restatements of
Torts have been used to argue for strict products liability for software.
Some commentators think the Restatement (Second) provides a broad and
flexible definition that might be extended to encompass software as a
“product.”® Contrarily, others think the Restatement (Third) provides a
narrower definition that explicitly excludes intangibles, including

82. SeeMaking Every Mission Possible, http://www.jeppesen.com/wlcs/index.jsp (last visited
Sept. 19, 2007).

83. Arguably, map software might implicate the same policy concerns as do laminated maps.
But see Jennifer L. Phillips, Information Liability: The Possible Chilling Effect of Tort Claims
Against Producers of Geographic Information Systems Data, 26 FLA. ST. U. L. REV. 743, 765-66
(1999) (arguing that makers of personal G.1.S. mapping systems are perhaps improperly deterred
by “the oppressive weight of strict liability” laid upon chart makers, and rather that the novel
technology should be encouraged).

84. See RESTATEMENT (SECOND)OF TORTS § 402A (1965); RESTATEMENT (THIRD) OF TORTS
§ 19 (1998).

85. See David W. Lanetti, Toward A Revised Definition Of “Product” Under The
Restatement (Third) of Torts: Products Liability, 55 Bus. Law. 799, 807-08 (2000).



2008) DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 145

software.® The flexibility of the Restatement (Second) was not obvious in
its initial drafts, which originally considered only foodstuffs to be products
for the purposes of strict liability. The flexibility comes instead from the
lack of any definition—the Restatement (Second) does not explicitly define
a product and instead just offers examples in the section’s comments.”’ As
the final draft of § 402A was completed in response to concerns from
various constituencies, the comments were extended to include a non-
exclusive list of examples of what would be considered products.®® The
complete definition was left to be fleshed out by judges in the case law
following its publication.?® Even though software is not listed among the
comments’ examples, nor directly addressed by case law, the Restatement
(Second)’s vague but expansive definition of a product as an item
“expected to reach the ultimate user or consumer” favors the theory of
recognizing software as a product.”

The Restatement (Third) recognized the uncertainties created by this
lack of a formal definition of “product” and added an explicit definition of
it in section 19. The Restatement (Third) defines a “product” as:

tangible personal property distributed commercially for use or
consumption. Other items, such as real property and electricity, are
products when the context of their distribution and use is
sufficiently analogous to the distribution and use of tangible

86. See, e.g., Zollers et al., supranote 9, at 775. “To the extent that [the definition of product
in the Restatement (Third) would preclude the inclusion of software in it], we urge courts not to
adopt the definition and, instead, focus on the policies underlying strict liability . . . .”

87. In later drafts, the definition was expanded to include “intimate bodily use” personal
items. Subsequent debate resulted in a further expanded definition. RESTATEMENT (SECOND) OF
TORTS § 402A (1965).

88. Id.

The rule stated in this Section is not limited to the sale of food for human
consumption, or other products for intimate bodily use, although it will obviously
include them. It extends to any product sold in the condition, or substantially the
same condition, in which it is expected to reach the ultimate user or consumer.
Thus the rule stated applies to an automobile, a tire, an airplane, a grinding wheel,
a water heater, a gas stove, a power tool, a riveting machine, a chair, and an
insecticide. It applies also to products which, if they are defective, may be
expected to and do cause only “physical harm” in the form of damage to the user’s
land or chattels, as in the case of animal food or a herbicide.

RESTATEMENT (SECOND) OF TORTS § 402A cmt. d (1965).
89. See Lanetti, supra note 85, at 812-13.
90. See, e.g., id. at 816.



146 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

personal property that it is appropriate to apply the rules stated in
this Restatement.”!

The same section also notes that “[s]ervices, even when provided
commercially, are not products.”

While software is distributed commercially for use or consumption, the
requirement for tangibility”® arguably eliminates software from the
category of “products.”® Therefore, proponents of strict liability for
software advocate for either ignoring the word “tangible,” interpreting
“tangible” to include software, or relying instead on the Restatement
(Second)’s more favorable definition.”> The Restatement (Third) offers
some flexibility and would allow treating software as a product if software
is found to be “sufficiently analogous” to tangible personal property.

On balance, the Restatement (Third) would seem to take the position
that software should not be treated as a product, or perhaps, to take no
position at all on the issue. The comments to section 19, which contain the
definition of a product, specifically discuss the possibility of strict
software products liability by noting the Winter dicta, the aeronautical
maps cases, and the U.C.C.’s treatment of software as a good.*® But the
comments also note the dearth of case law support for the proposition that
software should be treated as a product.”’

Although the U.C.C. governs contract and not tort law, many
commentators argue that software should be defined as a product by
analogizing to the treatment of software as a “good” under the U.C.C.
Customized and unique software aside, the preponderance of case law and
literature supports the theory that courts consider mass-market commercial
software to be a good under the U.C.C. despite its inherent intangibility.*®

91. See RESTATEMENT (THIRD) OF TORTS § 19(a) (1998).

92. Id. § 19(b).

93. See id. § 19(a). The Restatement (Third)’s definition allows an item to be a product if it
is sufficiently analogous to the distribution and use of tangible personal property. This is not an
easy solution for proponents of strict products liability for software. The argument for analogizing
software to the distribution and use of tangible personal property has proven so difficult to make
that proponents prefer the alternatives discussed above.

94. See Lanetti, supranote 85, at 817 (explaining “(t]his shift of computer software from the
tangible to the intangible realm arguably eviscerates any contention that software qualifies as a
U.C.C. ‘good’ because an intangible article is not ‘movable.” To assume that software would
automatically qualify as a ‘product’ therefore appears both premature and short sighted.”).

95. Id. at817-18.

96. RESTATEMENT (THIRD) OF TORTS § 19 cmt. d; see infra note 98.

97. RESTATEMENT (THIRD) OF TORTS § 19 cmt. d.

98.

Tangibility is not the critical issue for UCC application; the important



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 147

The plain language of the U.C.C. defines a good as “all things (including
specially manufactured goods) which are movable at the time of
identification to the contract for sale other than the money in which the
price is to be paid . . . .”**

The key distinction for the U.C.C., therefore, is movability-if an item
is “movable,” it is a good.'® Many commentators recognize that software
is not inherently “movable” but believe this distinction is hair-splitting.
They argue that judges should freely analogize intangibles to commercial
goods when policy dictates such a consideration under the U.C.C.""

But in spite of the mixed case law and commentary supporting the
theory of software-as-good, the question of tangibility continues to perplex
tort analysts. Do the bits and bytes that make up a software program,

characteristics of a good are movability, transferability, and identification at the
time of sale. The fact that a computer program cannot be seen or felt should not
preclude UCC coverage, as the UCC does not make those qualities the test for
exclusion. The type of intangibility meant to be excluded from Article 2, that of
choices in action, is different from the type of intangibility characteristic of
software. That program instructions are intangible does not rule out UCC
applicability, as programs can be identified, moved, transferred, and sold in the
same manner as other pieces of personal property classified as goods.

Bonna Lynn Horovitz, Computer Software As A Good Under The Uniform Commercial Code:
Taking A Byte Out Of The Intangibility Myth, 65 B.U.L.REV. 129, 151-52 (1985). See also 68 AM.
JUR. 3D Proof of Facts § 4, at 333 n.2, David Polin’s 2005 Amjur article “Proof of Manufacturer’s
Liability for Defective Software,” which lists a number of cases reinforcing judicial recognition of
software as a good under the UCC. The support for software-as-good under the U.C.C. stems from
the desire to impute the normal “goods” warranties to software (i.e. merchantability and fitness).
But pro-software-liability advocates argue that the U.C.C. definition should extend to torts. The
argument proceeds: if software is a “good” under the U.C.C., then it could be considered a
“product” under tort liability law.

99. U.C.C. § 2-105 (1998).

100. As my old contracts professor liked to say, “If you can put it in a truck, it’s a good.”
(referencing the UCC’s movability test). Professor Jeffrey Davis, Gerald A. Sohn Research Scholar,
U.F. Levin College of Law.

101. See, e.g., Jean Braucher, When Your Refrigerator Orders Groceries Online and Your Car
Dials 911 After an Accident: Do We Really Need New Law for the World of Smart Goods?, 8
WasH. U. J.L. & PoL’Y 241, 247 (2002).

Even in the twenty-first century, lawyers find it hard to give up certain vestiges
of formalism. Thus, in making the determination whether software is goods, some
commercial lawyers want to debate whether copies of software are “tangible.”
This approach can be tied to the Article 2 definitional requirement of a movable
thing. Even if software is not a “thing,” the courts may apply Article 2 by analogy.

Id



148 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

wholly the result of human intelligence, have an independent physical
existence from the media upon which the software is delivered? The
argument goes that a software program plus the physical CD on which it
is delivered equals a good.'” The contrary argument, however, likens the
CD to the cardboard box in which the CD is packaged.

Both are “containers” which “hold” the software. Both can be
discarded after the software is “installed.” Neither is required to use the
actual product which is the software program itself. Finally, the “CD-as-
good” classification completely falls apart when one considers software
that is purchased online and downloaded directly into the consumer’s
computer. In this situation, what, exactly, has “moved”?'® Has the
software moved or is it only electrons that have moved?'® Commentators
realize that the new realities for the distribution of software by direct

102. See Multi-Tech Sys., Inc. v. Floreat, Inc., No. 01-1320 DDA/FLN, 2002 U.S. Dist.
LEXIS 4644, at *9 (D. Minn. Mar. 18, 2002) (quoting Advent Sys. Ltd. v. Unisys Corp., 925 F.2d
670, 675 (3d Cir. 1991) (noting that computer software is a “good” within the meaning of the UCC
when the software code exists on a disc or other medium that is “tangible, moveable, and available
in the marketplace.”). However, other cases suggest that software should be considered a “good”
even though it is intangible. See, e.g., Micro Data Base Sys., Inc. v. Dharma Sys., Inc., 148 F.3d
649, 654 (7th Cir. 1998) (“[W]e can think of no reason why the UCC is not suitable to govern
disputes arising from the sale of custom software . . . .”); Advent Sys. Ltd., 925 F.2d at 676 (“The
importance of software to the commercial world and the advantages to be gained by the uniformity
inherent in the U.C.C. are strong policy arguments favoring [the] inclusion” of software
transactions within Article 2).

103. See Raymond T. Nimmer, Article 2B: Proposals for Bringing Commercial Law into the
Information Age, in FOURTH ANNUAL INSTITUTE FOR INTELLECTUAL PROPERTY LAW, at 675, 680
(PLI Patents, Copyrights, Trademarks, and Literary Property Course Handbook Series No. 532,
1998) (“The underlying property rights . . . cause[] differences in contracting practices between the
information world and the goods world. The differences are enhanced by the Internet and online
services that allow transfer of information without using any tangible objects.”).

104. Issoftware movable? The facile answer, and the one traditionally relied on by proponents
of strict products liability for software, is that software exists on physical media (CDs, DVDs,
floppy disks). To say the answer is facile is not to say that it is without merit. A close analogy can
be drawn between software and music CDs. Both contain intangible “products™ a CD has a
recording of a human voice. Absent the CD, does the recording exist and if so, where exactly?
Curiously, these existential challenges have never seemed to have much relevance when it comes
to music. No one would argue that Nora Jones’s new release was not a product. Of course, electrons
have been considered a good when it comes to electricity (and a product under tort law too).
RESTATEMENT (THIRD) OF TORTS: PRODUCT LIABILITY § 19 cmt. d (1998). But, electricity is a
completely fungible natural phenomenon. Software is wholly the result of unique intellectual effort,
a true intangible. Other than the fact that software relies on electricity to carry out its function, the
two things seem non-analogous.



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 149

download from the Internet to the user’s computer or device may preclude
it from being considered a “good” under the current U.C.C. definition.'®
Another issue is that computer software is protected by intellectual
property doctrine.'® Intellectual property law protects intangibles like
ideas, designs, and methods. Software’s status as intellectual property -
rather than as chattel would seem to make it clearly intangible, similar to
a song, a graphic design, a television episode, or a poem. Like each of
these things, software resembles intellectual property more than tangible
goods: software is typically licensed, not sold, and it can be reproduced in
near unlimited fashion at no or low cost. If other kinds of intellectual
property are not “goods,” it would seem that software should also not be
a “good” for purposes of strict liability.'”” In fact, the conundrum over
software-as-good is partially responsible for sparking a proposed
addendum to the U.C.C. to handle software-related transactions. The
addendum was originally titled Article 2B, but is now known as the
Uniform Computer and Information Technology Act (UCITA) of 2002.
UCITA defines software as information rather than a U.C.C. good.'®
Remarkably, UCITA goes so far as to contend that defect-free software
does not exist.'” The language in the comment is interesting and invokes

105. See Lanetti, supra note 85, at 817 (“This shift of computer software from the tangible to
the intangible realm arguably eviscerates any contention that software qualifies as a U.C.C. ‘good’
because an intangible article is not ‘movable.’ To assume that software would automatically qualify
asa ‘product’ therefore appears both premature and short sighted.”). See also Lee Kissman, Revised
Article 2 and Mixed Goods/Information Transactions: Implications for Courts, 44 SANTA CLARA
L.REV. 561, 566-67 (2004) (“The ‘facts and circumstances’ that affect the scope of Revised Article
2 consist of continuously emerging technology transactions that seem to defy classification in terms
of the Article 2 definition of ‘moveable goods.””).

106. Primarily software is protected by copyright, but more recently has been protected by so-
called “business method” patents. Copyright law defines software as a “literary work.” See 17
U.S.C. §§ 101, 102(a)(1) (2002); Apple Computer, Inc. v. Formula Int’], Inc., 562 F. Supp. 775
(C.D. Cal. 1983); Tandy Corp. v. Personal Micro Computers, 524 F. Supp. 171 (N.D. Cal. 1981).

107. The author concedes that software, unlike most other examples of intellectual property,
has the ability to cause injury. This line of thinking takes us squarely into consideration of the
policy issues.

108. See UCITA, supra note 60, § 102(a)(35). (“‘Information’ means data, text, images,
sounds, mask works, or computer programs, including collections and compilations of them.”). The
trend seems to be moving in the direction of considering software as something other than a
“good.” For example, Revised Article 2 excludes “information” from the definition of goods. See
U.C.C. §2-105 (1) (2005). It goes on to define computer software as information. See U.C.C. § 2-
103(1)(m) (2003).

109. See UCITA, supra note 60, § 403 cmt. 3(a). (“It is often literally impossible or
commercially unreasonable to guarantee that software of any complexity contains no errors that
might cause unexpected behavior or intermittent malfunctions, so-called ‘bugs.” The presence of
minor errors is fully within common expectations.”).



150 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

“common expectations,”''® perhaps in an attempt to influence tort law by

codifying the principle that consumers expect software to include
defects.!" The UCITA’s point of view has not been persuasive. First, and
perhaps unsurprisingly, critics claim that UCITA was designed to give
software companies a free pass in regards to contract liability by putting
“common” defects beyond warranty recourse.''> Second, UCITA has not
been widely adopted, and three states have even adopted anti-UCITA
laws.'" Finally, there is substantial confusion regarding whether software
embedded in a device is different in kind from UCITA software.'*
Commentators favoring strict liability for software would like to extend
the case law allowing software to be a “good” under the U.C.C. to
software-as-good under tort law for product liability. They downplay
UCITA, citing the consumer backlash''® and that Act’s lackluster adoption
by the states. Still, in leaping over the UCITA to get to the U.C.C., the
commentators largely fail to address the most important point, which
makes any analysis of the U.C.C. altogether suspect: the U.C.C. governs
contract law. Inasmuch as the parties are in privity of contract such that the
U.C.C. governs, contract warranties apply. When a party not in privity

110. Id.

111. Le.,if consumers expect bugs in software, then a bug that causes an injury cannot be said
to defeat consumer expectations, which is the test for product defect used in most jurisdictions.

112. Michael Traynor, while president of the A.L.IL said that the “enactment of UCITA, as it
now stands, would not be a beneficial development for the law.” See Michael Traynor, Feb. 4
Letter to A.L.I. Members on UCITA, A.L1.REP. (A.L.L, Philadelphia, PA), Winter 2003, available
at http://www.ali.org/ali/R2502_03-Letter.htm.

113. See, e.g., Cem Kaner, Software Engineering and UCITA, 18 J. MARSHALL J. COMPUTER
& INFO. L. 435, 437-43 (2000) (noting that critics of UCITA include twenty-four attorney generals,
the American Intellectual Property Association, and the Software Engineering Institute). In
addition, three states have adopted anti-UCITA legislation. See [owA CODE § 554D.104(4) (2002);
N.C. GEN. STAT. § 66-329 (2002); W. VA. CODE § 55-8-15 (2002).

114. See Braucher, supra note 101, at 250.

The drafters of Revised Article 2 attempted to include embedded software within
its scope by explicit, technical language, but they were stymied by the fact that it
becomes ever harder to distinguish embedded and non-embedded software. If
much depends on any given test, the product could be re-engineered to take
advantage of whatever legal regime is preferable. Thus, attempting a distinction
would likely drive engineering decisions in undesirable ways.

Id

115. See, e.g., Jeffrey P. Cunard & Jennifer Coplan, Selected Topics in E-Commerce and
Internet Law: 2001, 112 PLI/NY 241, 354 (2001) (explaining “there appears to be an increasing
backlash against UCITA, and efforts in many states to adopt it may be stalled absent further
changes”).



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 151

sustains an injury and a negligence or products liability claim is made, tort
law comes into play. The courts have vigorously defended the boundaries
between contract and tort law, not least in the key strict products liability
cases themselves.!'® A court may never directly use U.C.C. terminology
in a tort case (e.g., by calling products “goods”) and may never consider
applying U.C.C. law to decide the outcome. Therefore, even if the U.C.C.
defined software to be a “good,” the utility of analogies between goods
and products is questionable regarding what they may offer in relation to
uncharted areas of tort law like strict products liability for software.'"”
Furthermore, the erosion of the idea of the “movability” of software and
the inherent intangibility of software raise legitimate questions whether the
U.C.C. would even consider software to be a “good” in the first place.'"®

Ultimately, the U.C.C. and the UCITA have raised more questions than
answers for proponents of software strict products liability. Both works are
plain creatures of contract law, and to the extent they have been
persuasive, it is in the realm of commerce and not that of personal injury.
The concept of strict or absolute liability is foreign under contract law,
where economic efficiency is the primary objective, and the privity
requirement bars absolute liability. Tort law is a different animal indeed,
and strict liability is tolerated in the presence of an impressive variety of
tort doctrines''? that operate to contain and limit liability.

In summary, regarding whether software may legally be considered a
“product” for purposes of strict tort liability: (a) there is no case law on
point, (b) the Restatements are at best ambiguous to the definition, (c)
software is considered to be intellectual property and is protected by
intellectual property law like other non-product intangibles, and (d) the
analogy to software-as-good under the U.C.C. grows increasingly suspect
as the nature of software evolves. The weight of authority, including case
law, finds software is not defined as a “product” for purposes of tort
products liability. This schism between the current law and what strict

116. See, e.g., Greenman v. Yuba Power Prods., Inc., 3777 P.2d 897, 901 (Cal. 1963) (quoting
Ketterer v. Armour & Co., 200 F. 322, 323 (S.D.N.Y. 1912); Klein v. Duchess Sandwich Co., 93
P.2d 799, 804 (Cal. 1939) (reasoning that “the remedies of an injured consumer . . . ought not to
be made to depend ‘upon the intricacies of the law of sales,” and the warranty of the manufacturer
to such consumer should not be made to rest solely on ‘privity’ of contract.”).

117. See, e.g., RESTATEMENT (SECOND) OF TORTS § 402A cmt. m (1965) (“[I]t should be
recognized and understood that the ‘warranty’ [justifying strict products liability] is a very different
kind of warranty from those usually found in the sale of goods, and that it is not subject to the
various contract rules which have grown up to surround such sales.”).

118. If software is not a good in the first place, what benefit is there to drawing the analogy?

119. One example is the economic loss rule. For a discussion of the economic loss rule, see
generally E. River S.S. Corp. v. Transamerica Delaval, Inc., 476 U.S. 858 (1986).



152 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

liability advocates would favor therefore requires a major shift. The
imposition of strict products liability would have to be founded on policy
arguments sufficiently strong to overcome a wholly novel extension of the
doctrine to the arena of non-product intangibles.

II1. THE ARGUMENT AGAINST EXTENDING STRICT PRODUCTS
LIABILITY TO SOFTWARE

A. Extending Strict Liability to New Realms is Inconsistent with
Tort Reform

The last decade has witnessed an explosion of tort reform and not least
in the specific area of strict products liability.'*® A consensus of sorts has
emerged that strict products liability has grown too powerful, too broad,
or perhaps too inelegant in its application. For better or worse, legislatures
across the country are busily engaged in narrowing the doctrine’s
application.'?' More than a trend, the movement resulted in the creation of
a separate Restatement (Third) of Torts: Products Liability, published by
the A.L.L in 1998, which greatly restricted the application of strict
products liability. Given the social and political forces arrayed against the
strict products liability doctrine, it would seem perverse, or at least
contrarian to now advocate extending the reach of strict products liability
to an entirely new area of intangible soft-vre that has historically been off-
limits to the doctrine.

120. See, e.g., American Tort Reform Association’s Tort Reform Record (July 10, 2006),
available at http://www.atra.org/ files.cgi/7990_Record_7-06.pdf (listing tort reform legislation
passed in every state); see also National Association of Mutual Insurance Companies, Tort Reform:
An Overview of State Legislative Efforts to Improve the Civil Justice System,
http://www.namic.org/reports/tortReform/default.asp (listing state tort reform efforts); Stephen
Labaton, Bush’s Calls for Tort Overhaul Face Action in Congress, N.Y. TIMES, Feb. 3, 2005, at
Al6.

In his State of the Union address on Wednesday evening, [President] Bush once
again urged lawmakers to rewrite the tort law rules to do away with what he has
called frivolous and costly lawsuits, which he has repeatedly said have become a
significant drag on the economy . . . there is broad bipartisan support for some
pieces of Mr. Bush's tort law plan . . ..

d
121. See sources cited supra note 120.



2008} DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 153

B. The “Stack” Problem Posed by Component Software
Supplier Liability

Within the last decade, the nature of software has changed
dramatically. A contemporary software programmer does not begin with
a tabula rasa; he avoids “re-inventing the wheel” by first assembling a
“kit” of software components pre-written by other developers. These
software components are freely available online in both commercial and
non-commercial forms. The product the programmer ultimately delivers
will therefore be an amalgam of the programmer’s work layered on and
interwoven with the work of many others. The program, in turn, will be
installed into a context where it is designed to work in concert with yet
other applications—all designed to function interdependently. Therefore,
in a single device like an iPod, cell phone, or automobile, there may be
software written by dozens, hundreds, or even thousands of individual
developers and firms. This Note refers to the group of layered,
interdependent software operating within a particular device as “the
stack.”!*

Generally, the strict products liability doctrine has been extended to
reach suppliers of a product’s component parts. Makers of component
parts (such as automobile tires) have been held strictly liable for defects
in the final product along with the finished good manufacturer, even
though the finished good manufacturer makes all the design and
manufacturing decisions, and even though the component supplier may
have had no idea how its component product would be used.'” A question

122. Consider the many layers of software involved just in an iPod’s audio subroutines. First,
all of the software in the iPod must run on an operating system such as some derivative of the
popular and freely available open-source Linux system. Next, the operating system provides a
hardware interface layer of software that talks to software on the audio chip. The application layer,
or user-interface software, communicates with the operating system’s interface software to direct
it to play a music file. There might be a separate software program to handle each different type
of audio, video, or image file. Each of these layers and programs could have been written by one
or more different developers working for different firms, yet all are expected to work together
seamlessly. Because software occurs in layers we think of a stack of software in a particular device.

123. The law in this area is not settled and liability for component parts suppliers varies from
jurisdiction to jurisdiction. For a case demonstrating application of strict products liability to a
component parts supplier; see, e.g., Speer v. Wheelabrator Corp., 826 F. Supp. 1264, 1265 (D.Kan.
1993) (finding that the manufacturer of a multi-purpose push button electrical switch can be liable
for failure to warn the purchaser of the switch for use in a Tumblast machine that metallic dust
produced by the machine, which can cause the button to malfunction by sticking). Generally, courts
have held component parts makers strictly liable when there is a defect in the component part itself
rather than a defect arising out of the manner in which the finished good manufacturer used the
part. Zaza v. Marquess & Nell, Inc., 675 A.2d 620, 629 (N.J. 1996). There is no bright-line rule.



154 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

therefore arises that was not addressed by commentators calling for an
extension of strict products liability to software: what is the nature of
liability for component software providers? There are millions of software
components available on the Internet—some commercial (used after
paying a license fee), and some non-commercial (some entirely free or free
but with usage restrictions). Software developers liberally rely on these
components, and the component software provider usually has no specific
idea who is using its code or for what purpose.

It is undeniable that society reaps enormous benefits from component
software. “Large” software companies like Apple are able to deliver
inexpensive yet high-quality, software-enabled products like the iPod only
because software components are so freely available. This is largely
because Apple can avoid the cost of “re-inventing the wheel” with each
product. It is also probably true that the ready availability of high-quality
component software contributes to overall software product safety:
programmers with interests in highly specific areas create components
addressing those areas, and the functionality and reliability of the
component is consequently quite rich. Any extension of strict products
liability to software component suppliers would likely cause those
suppliers to respond by (a) removing all non-commercial components from
the web'** and (b) restricting and controlling components that were
previously easily and freely available. It is difficult to calculate the extent
of lost social productivity of such a move or the increased cost imposed on
all software-based devices, but it is fair to say it would greatly slow
technological progress and probably cause an enormous detriment to
society. Perhaps, it would even have the effect of reducing the safety of
software products overall.

Compare id. (noting that a manufacturer of a quench tank to be used in a coffee bean decaffeinating
system is not required to equip the quench tank with safety devices), with DeSantis v. Parker
Feeders, Inc., 547 F.2d 357, 361 (7th Cir. 1976) (noting that a supplier of component parts for a
cattle feeder can be liable for failing to provide a cover for the trough and auger parts of the feeder).

124. Non-commercial component suppliers would not necessarily be immune just because tort
products liability requires that a supplier be inherently commercial or that a product must be sold.
Many component suppliers cannot easily be declared commercial or non-commercial. They are
probably best described as quasi-commercial. An example would be a component developer whose
software was available for no cost, but who accepts donations on his web site. Another example is
a developer who offers a free version of his component with fewer features but hopes to sell
upgrades to an expanded-feature commercial version. Also, many large governmental agencies and
firms (like Apple, Sony, IBM, and even Microsoft) are participating in the collaborative nature of
code sharing and making code available without cost for use by other developers. Is such an action
by a commercial entity considered commercial or non-commercial? What if the entity has a stake
in the adoption of a certain technology or standard, and the software they are providing at no cost
helps to achieve such a strategic goal?



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 155

C. Embedded Software is Not Inherently Different than Other
Types of Software

Should a physical device (like a cell phone or iPod) that is powered by
embedded software be considered one product or two?'? Is the software
inside the device a service, a product, or something else? Existing tort law
provides no clear answers. But this is a critical question, perhaps the
critical question, facing contemporary products liability for software. As
software becomes a more ubiquitous part of every product we buy or use,
it will become even more tempting to consider the internal software as just
another component part of the product. This unification would essentially
eliminate the question of whether software can be considered a product
and open the door to hold manufacturers of software strictly liable for
product defects in the same manner that manufacturers of any other kind
of product are held strictly liable for product defects, regardless of
negligence.

On one hand, the software inside a device might be considered an
intrinsic part of the device—a component, like a button or screw. In that
case, if the device itself were defective, the software would have no
separate functional existence and consequently no separate analytical
meaning. A traditional products liability analysis would then ensue. For
example, if the software powering the ABS braking system in a Jaguar is
defective, and the law defines the embedded software as an intrinsic part
of the automobile, then Jaguar Corporation may be strictly liable for
injuries caused when the software fails to operate properly. This section
offers four reasons why software should not be considered an intrinsic part
of the physical device and therefore should be analyzed separately when
injuries occur as a result of defective embedded software. Finally, I will
advocate for the elimination of any categorical legal distinction between
“traditional” and “embedded” software.'?

First, the physical, tangible part of a device containing embedded
software is manufactured in a traditional assembly process. In contrast, the

125. “An example of embedded software, is the software that controls the anti-lock braking
system in cars.” Charles Shafer, Scope of UCITA: Who and What are Affected?, in UNIFORM
COMPUTER INFORMATION TRANSACTION ACT: A BROAD PERSPECTIVE (Stephen Y. Chow et al., Co-
chairs, 2001).

126. The author is not alone. See also id.; Philip Koopman & Cem Kaner, The Problem of
Embedded Software in UCITA and Drafts of Revised Article 2 (pt. 1),43 U.C.C. BULLETIN, Release
1, 1, 2 (2001). Previous drafts of Article 2 attempted to draw a distinction between software
embedded in goods subject to Article 2 and non-embedded software subject to UCITA. See id.
Release 2, 1, 6.



156 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

embedded software is intangible and its production cannot be compared
to any traditional manufacturing process.'*’ Still, commentators argue that
because intangibility is not a barrier to software’s classification as a
“good” for the U.C.C.’s purposes, '?* tort law should also consider software
to be a “product” in spite of its inherent intangibility.'” However, the
policies and purposes of tort law differ fundamentally from those of
contract law. Under tort law, the fundamental differences between tangible
and intangible products require separate legal treatment.

Second, in U.C.C. cases where software providers have been sued
under implied warranty theories for installing defective business software,
courts have developed a “hybrid” model where the software plus the
hardware is considered a good.*® However, courts have refrained from
creating a bright-line rule, instead making the determination on a case-by-
case basis. Proponents of strict products liability for embedded software
will almost certainly analogize hybrid U.C.C. goods and services cases to
software embedded in a physical device, asserting that tort law should
consider such a scenario to be a “hybrid” product. This analogy fails to be
entirely compelling because the U.C.C. cases are split on this issue, and
even the most favorable examples require case-by-case analysis. This
strategy hardly seems to be stable footing upon which to establish a major
expansion of tort liability. Embedded software, quickly becoming the most
common form of software, is not marketed to end-user consumers like
traditional mass-market software."®' A simplistic analogy to hybrid goods
and services products, however tempting as a quick fix, is inadequate. The
policies behind the issue require more careful examination.

Third, to the extent that the UCITA has been adopted or has been found
persuasive anywhere—a highly debatable point—it is recognized as

127. See Part I1.C (discussing the tangibility argument and its relevance).

128. See discussion, supra Part 11.C.

129. See generally Kaner, supra note 113, at 435.

130. See, e.g., Youngtech, Inc. v. Beijing Book Co., Inc., No. L-3799-04, 2006 WL 3903976,
at*5 (N.J. Super. Ct. App. Div. Dec. 29, 2006) (citing Dreier Co., Inc. v. Unitronix Corp., 527 A.2d
875,879 (N.J. Super. Ct. App. Div. 1986)) (“The judge correctly applied the UCC to this matter.
The sale of a computer system involving both hardware and software is a ‘sale of goods’ even if
there are incidental service aspects of the transaction; therefore, the UCC applies.”). In this case,
and others like it, a court looks at the form of payment (here, a single fixed price for all hardware,
software, and services together), and concludes that the entire sale is a U.C.C. “good.” Of course,
this case and cases like it feature U.C.C. and not tort issues.

131. See Zollers et al., supra note 9, at 769 (explaining “[a]dmittedly, software embedded in
medical equipment, airplanes, and air traffic control systems and used to monitor nuclear power
plants is not mass-marketed in the same way that automobiles and other consumer products
are . ...”). Thatis, when consumers purchase a product containing embedded software, they do not
usually even think about the software and may not even be fully aware that it exists.



2008]) DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 157

attempting to deal with the issue of embedded software as distinct from
other kinds of software.!*? Proponents of software-as-good wish to keep
embedded software squarely under Article 2’s umbrella and away from
seller-favorable UCITA laws. The confusion generated by the debate has
led to recognition that manufacturers of embedded software might easily
choose more favorable law just by modifying their products in minor ways
that enable semantic classification under UCITA rather than the U.C.C.
For example, a manufacturer might provide the necessary software in a
separate download service conducted when the consumer gets the device
home, rather than by providing it pre-installed at the time of sale.'**

Finally, it is difficult to escape the conclusion that all software is, in its
most essential form, embedded. After all, traditional mass-market software
runs on a device—a personal computer. What is it about a laptop or desktop
computer that is fundamentally different than any other kind of device
powered by a computer processor? Initially, embedded software was
software that could not be changed'** and was an intrinsic part of a device.
However, most modern devices now permit their internal software to be
changed with updates and upgrades or replaced with competitive, open-
source, or hobbyist versions.'*®

Upon reflection, it would seem that the concept of embedded in regards
to software is a distinction without a difference, at least perhaps for the
purposes of tort law. Worse, the situation is likely to become even more
confusing as embedded software becomes yet more ubiquitous and
continues to take on newer forms difficult now to imagine. Tort law can
elect to reject the tortured semantic pathways contemplated by contract
law, escaping the confusion inherent in multiple legal definitions of
software by categorically rejecting any definition of software as a product,
whether embedded or traditional, for purposes of strict products liability.

132. See Kaner, supra note 113, at 483.

133. For a complete discussion of this issue, see Kaner, supra note 113, at 483 (concluding
that replacement software for an automobile fuel injection system is a UCITA transaction, and a
full examination of the embedded software problem). See generally also Braucher, supranote 101,
at 241.

134. Socalled “firmware” used to be fixed in a computer’s hardware (hence “firm”). For more
information, see Firmware, in TELECOM GLOSSARY 2000 (2000), available at http://www.atis.org/
tg2k/.

135. See, e.g., Aaron Weiss, The Open Source WRT54G Story, WI-FI PLANET, Nov. 8, 2005,
http://www.wi-fiplanet.com/tutorials/ article.php/3562391 (noting “[t]he story of the Linksys
Wireless-G Router (model WRT54G) and how you can turn a $60 router into a $600 router is a
little bit CSI and a little bit Freaks & Geeks.”).



158 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

D. Strict Liability Should Apply Only to Manufacturing
Defects, and not to Software

The Restatement (Third) of Torts: Products Liability categorizes
product defects into three areas: manufacturing defects, design defects, and
warnings defects.*® Of these, only the category of manufacturing defects
is subject to strict products liability under the Third Restatement."”” A
manufacturing defect occurs “when the product departs from its intended
design [in a manner which causes an injury].”’®® A defectively
manufactured product has no ready analogue in the world of software. Nor
are the policy rationales behind making manufacturers strictly liable for
defects that occur in the manufacturing process analogous to software.

A commonly cited policy rationale for imposing strict products liability
on software is shifting the burden of proving negligence from the plaintiff
to the manufacturer.’® When a product is complex, and when the
manufacturing process is cloaked in trade secrets and confidential and
poorly documented steps, it is difficult and expensive for plaintiffs to
prove when and how negligence might have occurred. Strict products
liability greatly simplifies the plaintiff’s burden of proving his case, by
eliminating the requirement that the plaintiff prove the element of
negligence. In this way, strict products liability resembles the doctrine of
res ipsa loquitor and offers similar policy justifications.'® Therefore, a
plaintiff must prove only that the product was defective in such a way as
to cause injury."”! To show a defect, the plaintiff must prove that the

136. See generally RESTATEMENT (THIRD) OF TORTS: PRODUCTS LIABILITY § 1 cmt. a (1998)
(discussing the three types of defects and the requirement of defect).

137. See GEISTFELD, supra note 27, at 71 (discussing the strict liability doctrine of the
Restatement (Third)’s manufacturing defect category).

138. See RESTATEMENT (THIRD) OF TORTS: PRODUCTS LIABILITY § 2(a) (defining
“manufacturing defects”).

139. See GEISTFELD, supranote 27, at 72-74 (discussing the res-ipsa loquitor rationale for the
policy of strict liability for manufacturing defects).

140. See RESTATEMENT (THIRD) OF TORTS § 2 cmt. a (“In many cases manufacturing defects
are in fact caused by manufacturer negligence but plaintiffs have difficulty proving it. Strict
liability therefore performs a function similar to the concept of res ipsa loquitur, allowing deserving
plaintiffs to succeed notwithstanding what would otherwise be difficult or insuperable problems
of proof.”); DAVID G. OWEN, PRODUCTS LIABILITY LAW 284 (Thomson West 2005).

141. See, e.g., Phipps v. Gen. Motors Corp., 363 A.2d 955, 958 (Md. 1976) (noting “the
requirement of proof of a defect rendering a product unreasonably dangerous is a sufficient showing
of fault on the part of the seller to impose liability without placing an often impossible burden on
the plaintiff of proving specific acts of negligence.”).



2008] DON'’T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 159

received product departed from the intended design'®® during
manufacturing. This is a lighter burden to some extent because original
design specifications are readily discoverable as are other products in the
line without the defect. Therefore, the res ipsa policy is most compelling
in the area of defects occurring during the manufacturing process, which
are inherently difficult to prove. It is not as compelling in the area of
design or warnings defects, which are by their nature much easier to
demonstrate.

The res ipsa policy behind strict products liability was first conceived
in the context of the so-called “exploding bottle” cases.'® In those cases,
glass cola bottles, under pressure and subject to a myriad of stresses during
the manufacturing and recycling steps, would occasionally explode
spontaneously, injuring bystanders or drinkers with flying shards of
glass.'* There was no practical way for a plaintiff to trace the provenance
of a single bottle back to the factory and obtain evidence about what
happened at the exact date of manufacture of that bottle. In all likelihood,
tangible evidence of what a worker may or may not have done at any
particular time never existed at all. The evidentiary problem was
exacerbated by the fact that, in the process of malfunctioning, the bottle
destroyed itself, making any demonstration of the pre-existing defect
plainly impossible. Therefore, when a product defect occurs in a single
product out of thousands or millions of properly functioning products—a
so-called “one-in-a-million” accident—the plaintiff’s evidentiary burden
of proving negligence is improbably high.'** In cases like these, it seems
clear that it is unfairly burdensome to require the plaintiff to produce
evidence of negligence, and the application of res ipsa loguitor in the form
of strict products liability appears therefore to be appropriate.

142. See GEISTFELD, supranote 27, at 72, 72 n.6 (citing Pouncey v. Ford Motor Co., 464 F.2d
957, 960 (5th Cir. 1972) (involving expert testimony over whether the “plaintiff’s car had a fan
blade with an excessive number of metallic impurities in the steel™)).

143. See Escola v. Coca Cola Bottling Co., 150 P.2d 436, 437-38 (Cal. 1944) (“original”
modern products liability case).

144. For example:

Plaintiff testified that after she had placed three bottles in the refrigerator and had
moved the fourth bottle about eighteen inches from the case “it exploded in my
hand.” The bottle broke into two jagged pieces and inflicted a deep five-inch cut,
severing blood vessels, nerves and muscles of the thumb and palm of the hand.

Id. at 438.

145. See Thomas A. Cowan, Some Policy Bases of Products Liability, 17 STAN.L.REV. 1077,
1087 (1965) (“[Clourts . . . realize the great expense that plaintiffs would have to undergo to prove
negligent manufacture of one out of a million products of the defendant”).



160 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

Products subject to liability in tort have historically been tangible
goods, assembled in a discrete manufacturing process. Software is
intangible. It is an entirely different kind of product than those
contemplated by the res ipsa policy behind strict products liability, having
no discrete or even analogous manufacturing process. Because of its
intangible nature, there is no such thing as a “one-in-a-million” accident
in the creation of software. Software is created in a process more similar
to the writing of a novel than anything else. There are no raw materials, no
machines, no manufacturing plant, no delivery trucks, no crates or pallets,
and no assembly-line workers. Once the prototype of the first model of a
software program is finished, it is immediately ready for distribution. The
bottom line is that a plaintiff will never be asked to prove where
negligence may have occurred in the software manufacturing process,
because there is no such process.

Therefore, most injurious software defects will be of a design-defect
type that has the evidentiary helpful quality of reproducibility. Because
each unit of a device contains the same software, it is easy for the plaintiff
to demonstrate the defective behavior.'* Demonstration of negligence will
not turn on any issue of negligence that may or may not have occurred
during the software’s manufacturing process, leaving only analysis of the
larger (and much simpler to prove) issue of what the manufacturer should
have considered in the original software design.'*’ The plaintiff can
subpoena all the design documents and communications between
managers, designers, and software engineers, making expert analysis of the
complex inner workings of the iPod’s software potentially unnecessary
(and beside the point). Therefore, because the plaintiff’s burden of proving
negligence is not unreasonably high, software design defects should not be
held to a standard of strict products liability, but rather to an ordinary
negligence standard. This is the approach the Restatement (Third) would
seem to take by applying a risk-utility test to such design defects.

In conclusion, the res ipsa policy of strict products liability is most
useful for situations where “one-in-a-million” manufacturing defects
occur, and proof of a manufacturer’s negligence is unreasonably difficult
to obtain. Because there is no “manufacturing” process when building
software (nor even any reasonable analogue), and it is improbable that
anything resembling a “one-in-a-million” defect could occur, the res ipsa

146. For example, a plaintiff's expert could just play any iPod with the highest volume
selected and measure its decibel output.

147. For example, the questions of: did they know of the defect? Or, should they have known
of the defect?



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 161

policy behind strict products liability is not appropriate for analysis of
software-based injuries.'*®

E. Software—at the Current State of the Art—is an Essential but
Unavoidably Unsafe Product Category Deserving of
Exemption from Strict Liability

The Restatement (Second) defines a special category of products as
“unavoidably unsafe” and exempts them from strict liability.'* Similarly,
some high-risk industries, such as those for cheeseburgers,'*® vaccines, and
human blood are considered to be so valuable to society that they have
earned extraordinary judicial and legislative protection from strict products
liability."' Society values these commercial activities highly enough that
it protects them from the economic externalities of liability for certain
product-related injuries.'>> But what do such industries have in common
with each other and with software? Perhaps it is that, like other exempted
industries, the fledgling software industry holds out the promise of
dramatically improving the quality of human life, relieving suffering, and
increasing the effective wealth of every person on the planet. Still, at first

148. Additionally, the incredibly vibrant and growing practice of community and peer review
in the software industry makes the plaintiff’s job even easier.

149. RESTATEMENT (SECOND) OF TORTS, § 402A cmt. k (1965). Extended discussion of this
comment follows.

150. In 2004, federal legislation shielding fast food makers from obesity-related lawsuits
almost passed. See Kate Zernike, Lawyers Shift Focus from Big Tobacco to Big Food, N.Y . TIMES,
Apr. 9,2004, at A15. At least a dozen states have subsequently passed similar legislation. See, e.g.,
FLA. STAT. ANN. § 768.37 (West 2007).

151. Protection varies from state to state and is not absolute. Generally, however, the
protection takes the form of exempting a product from strict products liability, permitting plaintiffs
access to the normal negligence-based alternatives. See, e.g.,42 U.S.C. § 300aa-15 (2007) (limiting
the compensation that can be awarded under the National Vaccine Injury Compensation Program).
At first, the argument over human blood was whether blood was a “product” or not. But, plaintiffs
who (among other things) produced their hospital receipts showing specific amounts for blood
received in measurable product units, successfully satisfied some courts that a commercial market
in fact existed (at least in some key cases). Legislatures were thereby forced to confront the policy
issues directly, and in response quickly created special statutory protection for the blood bank
industry. See GEISTFELD, supra note 27, at 76-80.

152. The author refers to broad categories of products exempted on the basis of social utility.
Society’s valuation of these products is exemplified by statutory exemptions exist in various
jurisdictions for all sorts of products including drinking alcohol, cheap handguns, products
containing asbestos, and above-ground pools with vinyl bottoms. For a comprehensive test, see
RESTATEMENT (THIRD) OF TORTS: PRODUCTS LIABILITY § 2 cmt. d, Reporter’s Note § IV(D)
(1998). It is also worth noting that tobacco products (i.e., cigarettes) almost made it into a protected
category in the Restatement (Third) but this exemption was narrowly voted down due to the
impending tobacco litigation. For more, see A.L.I. Proceedings 209-10 (1997).



162 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

glance, one might conclude that these product categories have nothing
substantive in common except legislative exemption from strict liability.
After all, blood and vaccines are critical medical products, whereas fast
food is an issue of personal responsibility.'*> However, these industries
share at least four compelling qualities as discussed below. The software
industry also shares these qualities and therefore deserves similar judicial
or legislative protection from strict products liability.

First, all four groups of products have the uncommon potential to cause
widespread harm. This makes them especially susceptible to strict products
liability and makes the economic cost imposed by the doctrine particularly
large for these industries relative to other products. Second, the exempted
products all have qualities that make it inherently difficult, if not
impossible, to achieve safety beyond a certain point, so-called
“unavoidably unsafe” products.'>* Third, the products are seen to be
crucially important or vitally necessary to society in some way. Fourth,
each product category delivers benefits to society far in excess of the
actual aggregate cost of actual injury. The following two sections explain
these qualities, and make the case that software shares them and should
likewise be exempt. Finally, this Note examines the software industry’s
relative immaturity and argues that an industry with such uncommon
promise should be nurtured and shielded from strict products liability.

1. Necessary Products Facing Potentially Industry-Swallowing Liability
Should be Exempt from Strict Products Liability

The authors of one article advocating strict products liability for
software'> grant a remarkable concession, admitting that “[i]f software
can help relieve suffering and enhance the quality of life, we would want
to create an environment where its development can flourish.”'*® In other
words, if the social utility created by software outweighs its risks, the
economic burden created by strict liability should not be placed on
software. It is noteworthy that categorically exempt products—like blood,
vaccines, asbestos, and fast food—include the potential for widespread

153. Yet, what about other products where personal responsibility is implicated? These
products have not seen swift legislative exemption as has fast food. For example, you might ask
the tobacco companies about personal responsibility.

154. The Restatement (Second) of Torts defines such products this way: “[t]here are some
products which, in the present state of human knowledge, are quite incapable of being made safe
for their intended and ordinary use.” RESTATEMENT (SECOND) OF TORTS, § 402A cmt. k.

155. Zollers et al., supra note 9, at 745.

156. Id. at 772,



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 163

harm and consequently face an uncommonly large potential liability for
tort damages.

For example, until sometime in the late 1960s, over one-third of blood
transfusion recipients acquired hepatitis.'”’ The economic burden created
by these victims, if allowed to recover from the fledgling network of blood
banks, could have drastically limited or even eliminated the blood bank
industry entirely. In a 1995 class-action lawsuit filed by hemophiliacs who
had been infected with HIV, Judge Richard Posner noted that the “$25
billion in potential liability (conceivably more)” could “hurl the industry
into bankruptcy” and potentially swallow “a major segment of the
international pharmaceutical industry . . . .”'®

In the case of vaccines, where injuries might not be discovered for
decades or even generations, millions could be harmed, and the potential
damages could dwarf even the DES (Diethylstilbestrol) drug cases. Even
the threat of such unlimited liability could have socially expensive
ramifications when vaccine producers abandon such high-risk products.
This reaction by vaccine producers has occurred, and it is not surprising,
therefore, that vaccines have garnered exemptions from strict liability."
Fast food is consumed by many, and regular consumption is known to
have adverse health effects. If, as has been suggested, obese persons might
become plaintiffs against these fast food companies, the potential liability
would seem to be incalculable. The fact that these high-risk products have
been exempted from strict liability—precisely because of their potential
to cause widespread injury—is significant. It demonstrates that society
values these products in excess of their potential cost, and it realizes that
the burden of liability without fault could severely curtail or completely
destroy these necessary industries.'®

157. Worse yet, almost half of American hemophiliacs (some 10,000) and about 29,000 others
were infected with AIDS via transfused blood between 1970 and 1985, when the first reliable
commercial AIDS test became available. See GEISTFELD, supra note 27, at 77-78; Michael J.
Miller, Note, Strict Liability, Negligence and the Standard of Care for Transfusion-Transmitted
Disease, 36 ARIZ. L. REV. 473, 513 (1994).

158. In re Rhone-Poulenc Rorer Inc., 51 F.3d 1293, 1298, 1300 (7th Cir. 1995).

159. Vaccines have been exempted even where potential injury is not only foreseeable but is
anticipated. The classic case is that of the rabies vaccine, cited as an “outstanding example” in
comment k. The vaccine “not uncommonly leads to very serious and damaging consequences when
it is injected[, but] . . . ‘since the disease itself invariably leads to a dreadful death, both the
marketing and use of the vaccine are fully justified, notwithstanding the unavoidable high degree
of risk which they involve.”” See GEISTFELD, supra note 27, at 78-79.

160. It may not be immediately obvious why society should have a stake in protecting the oft-
disparaged fast food industry. But on closer analysis, compelling reasons emerge. First, the fast
food industry as a whole employs a vast number of Americans. This industry provides menu entry-
level and unskilled jobs. Second, the industry provides a source of readily available, low-cost food



164 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

Embedded software is ubiquitous and a defect can be propagated nearly
instantaneously as thousands or millions of users download a new version.
Software, therefore, could face enormous and potentially industry-
swallowing liability as the result of a single injury-causing defect.'®
Despite this potential nightmare scenario, the actual cost to society of real
uncompensated injuries resulting from defective software appears to be
very low, if not nonexistent. People are not currently being injured by
defective software with any measurable frequency. The argument for
extension of strict products liability to software based on the potential for
injury is something of a bogeyman. The real social cost of software
appears to be very low at present—too low to justify slowing or reducing
of the social benefits provided by software.

Calculating the benefit conferred to society by software is difficult to
do with any precision. Yet, it appears that the benefit is enormous, and
well in excess of the direct cost to society.'? Almost every area implicated
in the quality-of-life measurement is also substantially affected by the

to a large segment of the population. Third, the industry currently thrives under razor-thin margins.
If the potentially vast liability for obesity, heart disease, diabetes, and other diet-related illnesses
is assigned to the fast food industry, it is likely that either the industry would shrink dramatically,
or the costs of fast foods would increase to the extent necessary to afford uncommonly large
settlements. The benefits accruing to society by having the fast food companies in the economy
offering low-salary jobs and low-priced goods outweigh the harm done to the minority of
consumers who over-indulge. As we have seen in the case of blood, even if the number of those
injured is large, an industry may be considered valuable enough to overlook the harm. While the
personal responsibility issue is also implicated in the liability exemptions for fast food, it is not
sufficient. Just ask the tobacco companies.

161. Imagine the number of potential plaintiffs represented by Birdsong’s class in the iPod
litigation. Should Apple be found liable for hearing damage, possibly to anyone who ever listened
to an iPod device, it is likely that the dollar value of the awards could dwarf the gross receipts from
the relatively inexpensive device (a recipe for bankruptcy). While such a result might be preferred
in the case of a device that society wishes to discourage altogether, it is distinctly to be avoided in
the case of a “quality of life” enhancing device like the iPod.

162. See, e.g., Michael R. Maule, Applying Strict Products Liability to Computer Software,
27 TuLsA L.J. 735, 755 (1992).

[IIncreased reliance on computer technology has given humankind a glimpse at
a technological revolution that will rival the industrial revolution in its impact on
society. . . . Additionally, the continued growth of computer technology has
important political effects [perhaps] one of the more significant consequences [of
ubiquitous software availability. Essentially, clomputers have improved our lives
in many ways.

Id



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 165

development and use of computer software.'®® Furthermore, for the next
foreseeable period of time, software is likely to continue to increase our
quality of life far beyond current levels.'* The vigorous political response
to the “offshoring” threat to U.S. programming industry indicates a
widespread recognition that the industry is of critical importance to the
economy. The software boom has arguably created more well-paying
white collar jobs than any other sector. The export of American intellectual
property in the form of software,'®® or enabled by software,'® is a multi-
billion dollar industry which grows each year. But as significant as these
economic indicators are, they pale in comparison to the promises that
embedded software offers for the quality of life, health, and longevity of
every human on the planet. Inexpensive devices powered by software are
making their way into every aspect of life, reducing human work load,
increasing safety, and increasing health and longevity.

The conclusion is that software has a substantially high present value
to society, exceeding the benefits conferred by other “ordinary” types of

163. For example, consider the awe-inspiring developments that software offers the disabled.
“[J.B.] Galan, injured in a diving accident six years ago, is paralyzed from the shoulders down. But
thanks to Project Archimedes, he excels at using computers for complex tasks. Writing letters,
designing Web pages, and using telephones and electronic mail are [now] part of his everyday
routine.” David Salisbury, Total Access Despite Disabilities, STANFORD TODAY, Mar./Apr., 1996,
available at http://www.stanford.edu/dept/news/stanfordtoday/ed/9603/ 9603nsmf.html. “A sensor
implanted in a paraly[z]ed man’s brain has enabled him to control objects by using his thoughts
alone. The experimental set-up allowed the man, who has no limb movement at all, to open e-mail,
play a computer game, and pinch a prosthetic hand’s fingers.” Brain Sensor Allows Mind-Control,
BBC News, July 12, 2006, available at hitp://news.bbc.co.uk/2/hi/health/5167938.stm. For an
example of a software-powered robotic prostatectomy device, see Pioneer and Leader in
Laparoscopic Radical Prostatectomy Web Site, http://www.krongrad-urology.com/ (last visited
Sept. 19, 2007).

164. Imagine the potential impact of a few simple examples: traffic-regulating software,
embedded in automobiles, that not only makes travel less stressful but also reduces injury and saves
lives. Robotic technology offers the possibility of creating more labor savings around the home,
replacing human workers in high-risk occupations, and greatly increasing available leisure time.
Medical robots allow remote surgeons to perform complex surgeries. Simple medical procedures
may soon be performable by completely automated robotic devices, and therefore, much less
expensive and lower-cost. For an example of a prototypical robotic fire hose that can enter a
burning building (no human needed) and put out a fire, see Snake Robot to the Rescue, Innovations
Report, http://www.innovations-report.com/html/reports/energy_engineering/report-67839.html
(last visited Sept. 19, 2007).

165. Consider as one example the worldwide impact of Microsoft Windows and the
applications that run on it.

166. Consider the delivery of American music, news, magazines, movies, and television and
content that is delivered by software, e.g., onto a cell phone screen, which is a very popular feature
in Europe.



166 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

goods. And, even though the potential for injury from software appears
inevitable at some point, injuries caused by defective software today are
very rare. Society is realizing tremendous benefits from software far in
excess of any real costs. The imposition of strict liability might slow or
impede the industry or even deter useful products altogether—the exact
opposite of the result that society prefers.'®’

Like blood, vaccines, asbestos, fast food, and other socially desirable
products, software should be exempted from potentially industry-
swallowing liability in the form of strict products liability. For the present,
at least, the software industry is responsible for creating some of the most
dramatic improvements ever seen in the quality of human life and
promises to continue this trend into the foreseeable future. Society should
nurture such an industry as long as the aggregate benefits exceed the total
costs.

167. The story of the vaccine industry is particularly alarming in this regard.

Vaccines have been a powerful tool in improving our well-being and longevity.
Vaccines have been developed to control the following diseases: polio, whooping
cough, measles, rubella, mumps, diphtheria, tetanus, influenza, pneumococcal and
meningococcal infections, and hepatitis. Four decades ago, polio was a dreaded
disease that afflicted 57,000 Americans; in 1984, there were four cases. . . .

Yet, despite this spectacular accomplishment, the number of drug companies
producing vaccines has declined sharply. “Between 1965 and 1985, the number
of U.S. vaccine manufacturers shrank by more than half; . . . {a]nd only two major
companies . . . were still investing heavily in vaccine research.” Within the 1980s,
the number of firms producing vaccines for five serious childhood diseases
declined from thirteen to three.

Fear of liability was a major reason for this retreat. . . . The profit per dose is
low, and yet the perceived liability per dose is high. . . . [O]ne scholar has asserted
that blame for this perception must be assigned to the shift in tort law from
negligence . . . to strict liability (with its emphasis upon alleged defects in the
product itself).

Certainly there are instances that critical commentators can cite to buttress their
claim that modern tort law is a major culprit in drying up the number of vaccine
manufacturers. Bendectin, a moming-sickness drug, was voluntarily withdrawn
from the market after a flood of litigation . . . . [T]he manufacturer, Merrell Dow,
...gave up ... because of adverse publicity and the $18 million annual cost of
legal fees and insurance that approximated the $20 million in sales.

John P. Wilson, The Resolution of Legal Impediments to the Manufacture and Administration of
an Aids Vaccine, 34 SANTA CLARA L. REV. 495, 505-06 (1994).



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 167

2. Unavoidably Unsafe Products Like Software Should be Exempt from
Strict Products Liability

Blood, vaccines, and fast food all have qualities that make them
unavoidably unsafe. For blood, the prevalence of blood-borne illnesses, the
direct injection of blood into the patient, and the high-pressure
circumstances under which most transfusions occur add up to a
recognizably high-risk situation. Vaccines are similar in that they are
injected directly into a patient’s veins, have systemic effects, and are also
generally composed of particles of deadly illnesses. Fast food is by
definition food that is low-cost, of low quality, and high in fat and
sugar—a recipe for health problems.'®® Products which cannot reasonably
be made any more safe are exempted by both Restatements of Torts.

In the Restatement (Second), comment k£ to section 402A plainly
identifies the category, using medical devices and vaccines as examples:

k. Unavoidably unsafe products. There are some products which, in
the present state of human knowledge, are quite incapable of being
made safe for their intended and ordinary use. These are especially
common in the field of drugs . . . . Such a product, properly
prepared, and accompanied by proper directions and warning, is not
defective, nor is it unreasonably dangerous . . . . It is also true in
particular of many new or experimental drugs as to which, because
of lack of time and opportunity for sufficient medical experience,
there can be no assurance of safety, . . . but such experience as there
is justifies the marketing and use of the drug notwithstanding a
medically recognizable risk. The seller of such products, . . .
properly prepared and marketed, . . . is not to be held to strict
liability . . . merely because he has undertaken to supply the public
with an apparently useful and desirable product, attended with a
known but apparently reasonable risk.'®

This comment has been very influential,'’® but its reliance on
pharmaceutical examples has led some commentators to erroneously
conclude its application is limited to drugs and healthcare-related

168. For an entertaining yet frightening look at the problem, see SUPER SIZE ME (Samuel
Goldwyn Films, LLC 2004). For legal analysis, see generally Richard C. Ausness, Tell Me What
You Eat, and I Will Tell You Whom to Sue: Big Problems Ahead for “Big Food?,” 39 GA.L.REV.
839 (2005).

169. RESTATEMENT (SECOND) OF TORTS, § 402A cmt. k (1965).

170. See 2 MADDEN & OWEN ON PRODUCTS LIABILITY § 22:3.



168 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

products.'”’ However, the plain language of comment k as well as the

contemporaneous scholarship of Dean Prosser and his key A.L.I. advisors
demonstrate the clear intention to apply the exemption generally to useful
products, which can not reasonably be made any safer, and not just to
pharmaceuticals.'”

The Restatement (Third) does not directly address unavoidably unsafe
products in the manner of comment k. However, by requiring plaintiffs to
prove that a manufacturer failed to adopt a “reasonable alternative
design”'” that would eliminate the danger, it effectively excludes liability
for injuries caused by unavoidably unsafe products. After all, if inherent
risk is unavoidable, then by definition, no reasonable alternative product
design exists and the existing design cannot be described as defective. No
design defect, no liability.

Case law solidly supports the proposition that products that are
unavoidably unsafe by their nature should be exempt from strict products
liability.'” For example, an oft-cited Florida Supreme Court case,
Radiation Technology, Inc. v. Ware Construction Co.'” describes a
rationale for exempting unavoidably unsafe products:

[The consideration for exemption from strict liability] balances the
likelihood and gravity of potential injury against the utility of the
product, the availability of other, safer products to meet the same
need, the obviousness of the danger, public knowledge and
expectation of the danger, the adequacy of instructions and
warnings on safe use, and the ability to eliminate or minimize the
danger without seriously impairing the product or making it unduly
expensive. Thus, an unsafe product, whether it be characterized as
inherently dangerous or unavoidably dangerous, would not
necessarily be an unreasonably dangerous product.'

171. See GEISTFELD, supra note 27, at 76 (discussing problematic interpretation by some
courts of “unavoidably unsafe product” as limited to pharmaceutical products).

172. See Owen et al., supra note 9, at 344 (discussing the development of comments i, j, and
k and their applicability to unreasonably unsafe products doctrine).

173. See RESTATEMENT (THIRD) OF TORTS, § 2(b) (1998) (providing that a product “is
defective in design when the foreseeable risks of harm posed by the product could have been
reduced or avoided by the adoption of a reasonable alternative design . . ., and the omission of the
alternative design renders the product not reasonably safe . . . .”).

174. Radiation Tech., Inc. v. Wave Constr. Co., 445 So. 2d 329 (Fla. 1983).

175. Id

176. Id. at 331.



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 169

The discussion of “utility” in Radiation Technology exemplifies the
policy rationale that it is economically inefficient to impose strict liability
on manufacturers of socially desirable, but inherently dangerous, products.
Furthermore, economic analysis of products liability tort law suggests that
it is possible that manufacturers have no ethical responsibility to protect
consumers from unavoidable risks.'”” Influential commentator David G.
Owen has posited that “[u]tility theory, as truth and equality, [] suggests
that manufacturers are not morally accountable for generic dangers[.]”'”®
He argues that society would be harmed by a rule which holds
manufacturers liable for “unavoidable” or “undiscoverable” risks.'” Such
a rule would “overdeter” manufacturers and cause them to avoid
introducing socially desirable, beneficial products until such a time as the
risks can be quantified.'®® Finally, imposing a duty requiring strict
manufacturer liability for unknowable risks would probably have little
effect on the manufacturer’s behavior and therefore, would be ineffective
as an incentive.'®!

A critical question then is whether embedded software is unavoidably
unsafe at current levels of technology. As discussed, the UCITA'® clearly
states that the manufacture of defect-free software, at the current state of
human knowledge, is impossible:

[A] popular operating system program . . . contained over ten
million lines of code or instructions. In a computer, these
instructions interact with each other and with code and operations

177. RESTATEMENT (THIRD) OF TORTS § 2(b) (1998).

178. See Owen, supra note 39, at 484.

179. Id. at 483.

180. Id. at 484.

181.
An argument sometimes proposed in favor of such a duty is that liability for such
risks may serve instrumentally as an incentive for manufacturers to increase their
levels of research to discover dangers at the threshold of knowledge, which may
result in a net benefit for society. If liability for failing to warn of unknowable
dangers really did have this result, and if the resulting benefits to potential victims
really did exceed the detriments to other consumers and to shareholders, then
utility and efficiency would support a rule of liability in such cases. But
manufacturers should be investing optimally in research under a negligence
standard of accountability, based on knowable risks alone, and extending liability
to risks that cannot reasonably be discovered probably will not cause most
manufacturers to do more research than they already think is best.

Id. at 483-84.
182. See UCITA, supra note 60, discussed supra Part I11L.B.



170 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

of other programs. This contrast[s] with a commercial jet airliner
that contained approximately six million parts, many of which
involved no interactive function. . . . It is often literally impossible
or commercially unreasonable to guarantee that software of any
complexity contains no errors that might cause unexpected behavior
or intermittent malfunctions, so-called “bugs.” The presence of
minor errors is fully within common expectations. '

This comment, especially the last sentence, is remarkable. Defect-free
software would itself be unexpected! The UCITA argues, therefore, that
software having the potential to injure is unavoidably unsafe (or
unavoidably defective).'® Of course, as discussed above, there are
problems with relying on the UCITA for any tort analysis. First, and most
importantly, the UCITA is founded in contract law, not torts. Second, the
UCITA is controversial and not widely adopted,'® and yet the comment
cited above resonates. Surely every human who has worked with
computers in any capacity is familiar with commonly occurring software
defects or “bugs.” Programmers would also certainly agree with the
UCITA statement. Additionally, it might be true that most people would
agree that it is more remarkable that software-based products work as well
as they do, rather than the reverse. The UCITA’s comment, therefore, may
simply be describing the situation as it exists today.

To conclude that software development is not unavoidably unsafe, it is
necessary to assume that software developers possess: (a) the tools and
technologies necessary to achieve “safe” products and (b) have the ability
to foresee the particular dangers posed by software or by devices
incorporating software. These assumptions are unsound. In the last twenty-
four months, literally hundreds of books instructing software developers
in general programming techniques (not counting texts on specific
programming languages), have been published.'®

A typical guide designed for software programmers instructs that
software design should not be referred to as “software engineering” but
rather as “software research.”'®’ Engineering, it explains, such as bridge

183. UCITA § 403 cmt. 3(a).

184. Id

185. See discussion of UCITA, supra Part I1.C.

186. Just search Amazon for “programming” and witness the vast number of results.
187. WHIL HENTZEN, THE SOFTWARE DEVELOPER’S GUIDE 121 (3d ed. 2002).



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 1M

building, is based on a standard set of tools, technologies, and processes.'®®
If any of these three core components change during an engineering job,
overruns and difficulties are foreseeable and expected.

Imagine if the bridge-building engineers were required to adopt new,
untested tools and components for each project. Programmers always
confront this situation: “With software projects, the technology changes
[for] every project, the tools change [for] every project, and the process is
in a continuous state of flux.”'®

The analogy of software design to traditional engineering demonstrates
the difficulties that software developers face in designing any product,
much less one that pushes technological boundaries. Another way to state
the situation: the software development process will have matured when
a consistent and widely accepted set of tools, technologies, and processes
are available and change only infrequently. Such is not the case now, nor
will it be in the foreseeable future.

No official count of the number of programming languages is currently
available. One web site purports to list 8512 current programming
languages as of 2006.'” Programming languages are incorporative; that is,
a certain programming language is itself written in another, more basic,
programming language.'®' That language can in turn be used to develop
other, more complex languages.'® The number of possible combinations
of languages used to iteratively create other languages is growing
exponentially. Defects can and do arise at any level of all these
incorporated technologies, not just at the most superficial level of effort
where the programmer is writing the code used for the instant application.

188. Id. Furthermore, engineering is based on principles like physics and architecture, which
do not change very often, and when they do change, enormous disruption is expected. Software
design, on the other hand, is based on core principles that can change radically within each year.

189. Id.

190. See The Encyclopedia of Computer Languages, Murdoch University, Australia, available
at http://hopl.murdoch.edu.au/ (lat visited Sept. 19, 2007).

191. The concept of a programming “language” is itself in flux. There is not even agreement
as to what a programming language is.

192. For example, the currently popular “AJAX on Rails” framework (a type of meta-
language) is made up of several other languages: Javascript, XML, and Ruby on Rails. Ruby on
Rails is written in Ruby, which is in turn written in C++. C++ is an extension of the C language,
which is written in assembly code. C language varies depending on which type of processor is used.
Javascript exists within an Internet browser. Therefore, each browser offers its own version of
Javascript, not entirely compatible with the other browser versions. Worse yet, different revisions
of each browser (for example, Microsoft’s Internet Explorer versions 4, 5, 5.5, and 6) all support
different versions of the Javascript language, each unique within that type and version of browser.
See, e.g., Wikipedia, JavaScript, http://en.wikipedia.org/wiki/Javascript (describing history and
features of JavaScript) (as of Mar. 3, 2008, 16:15 EST).



172 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

So, even while the quality of the available languages and tools is
increasing, the complexity of inter-relatedness is increasing even faster.

If it is impossible for the average developer who relies on these ever-
changing tools and technologies, through reasonable effort, to completely
eliminate defects from software, it follows that embedded software is to
some extent unavoidably unsafe. Therefore, it would be perverse to hold
a non-negligent developer strictly liable for injuries caused by those
defects. As applied to software, strict products liability would attempt to
compel a result over which the software engineer lacks control. Such a
result would defeat a major policy rationale for strict products liability: to
provide an incentive for products engineers and manufacturers to develop
safe products. Certainly, software developers whose products will be used
in hazardous or dangerous conditions, such as makers of implantable
medical devices, have a duty of reasonable care to ensure that their
products are as defect-free as possible, and to test them thoroughly. This
is a traditional negligence standard. It falls short of imposing liability
without fault on those developers—a standard which cannot possibly
create the incentives for which the policy is designed.

The current state of software technology is changing so quickly that it
is impossible for developers to anticipate and design against all risks.
Moreover, software is inherently unstable (i.e., developers cannot avoid
“bugs”). Because embedded software is becoming ubiquitous, and can be
rapidly installed in many places, potential liability is huge. Yet, society
considers this kind of software very important, if not critical. Therefore,
software is entitled to an exemption from strict products liability based on
its nature as unavoidably unsafe, yet socially necessary.

3. The Software Industry is Immature and Should be Nurtured, Not
Burdened with Strict Liability

The concept that nascent industries deserve some protection from tort
liability has an impressive pedigree. The development of strict products
liability doctrine was delayed at the beginning of the industrial revolution,
largely to give the new industrial technologies time to “get off the ground”
and to mature before subjecting them to the additional externalities
imposed by tort liability.'"® Recognizing this, many of the law review

193. “During the nineteenth century, courts. . . were concerned that any expansion of liability
beyond the contractual relationship would expose manufacturers and other product sellers to
excessive liability, thereby disrupting product markets to the detriment of society.” See GEISTFELD,
supra note 27, at 9; see, e.g., Michael Rustad & Lori E. Eisenschmidt, The Commercial Law of
Internet Security, 10 HIGH TECH. L.J. 213, 259-62 (1995) (stating the defenses in tort law developed



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 173

articles calling for strict products liability for software announce, as if it
were fact, that the software industry has now matured to the point where
it can afford to, and should, bear the cost of an unanticipated injury.'**

One economic explanation for giving new industries the kid-glove
treatment is that industries that produce or have the potential to produce
massive social benefits far in excess of their “real” cost should be
nurtured. Nurturing includes being treated more delicately as far as legal
burdens and government regulations are concerned. Furthermore, when
industries are nascent, they often cannot afford to bear the burden of
injuries caused by products which can be inherently unstable due to the
intrinsic nature of immature technologies.'” Finally, in the early years of
industrial development, the potential for injury can be high but actual
injuries relatively low, due to the slow rate of adoption of the new
technology.'*

Another explanation for treating promising new industries differently
when it comes to strict products liability is that immature industries cannot
readily obtain insurance against risks. A key rationale for holding
manufacturers strictly liable for injuries caused by their products is the
“insurance” or “risk-spreading” rationale—product manufacturers can
efficiently pass on the cost of insuring against injury to consumers in a
diluted fashion, whereby the manufacturer increases the price of each
product sold by a small amount to cover the cost of liability."”’ Thus, in the
aggregate, the users of the product effectively self-insure against risks, an
economically efficient outcome. This has proven to work well in many
cases involving products in mature industries where risks are easily
foreseeable.

However, such strategy is meaningless when the manufacturer cannot
obtain insurance. Insurers are unwilling to insure immature or developing
industries where potential liability is very large and insufficient statistical
data exists to perform necessary actuarial analysis.'”® The majority of

to protect industrialization (citing MORTON J. HOROWITZ, THE TRANSFORMATION OF AMERICAN
Law 1780-1860, at 99-161 (1977)).

194. See Zollers et al., supra note 9, at 771-72.

195. These immature technologies are perhaps, unavoidably unsafe. Refer to detailed
discussion of this issue, supra Part I11.D.

196. For example, in 1930, there was only a fraction of the number of automobiles in use in
the United States, compared to the number today.

197. See OWEN, supra note 19, at 486.

198. See GEISTFELD, supra note 27, at 155.

Unforeseeable risks pose a hard actuarial problem, making the provision of
insurance much more difficult, if not impossible. Good actuarial data depend upon



174 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

devices containing embedded software (music players, cell phones,
personal mapping tools) are altogether new types of devices, that
inherently lack any history of use or information about “normal” levels of
injury. Without such data, insurers are unwilling and unable to provide
reasonably-priced insurance to manufacturers.'” If software developers
cannot obtain reasonably-priced insurance (or any insurance at all) against
product-related injuries, then such costs cannot be passed to the consumer
and the risk-spreading policy objective is moot. In this case, between the
software manufacturer and the consumer, the consumer may actually be
in a better position to insure against injury than is the manufacturer.

The software industry is immature and is in that sense fragile.® The
articles advocating strict products liability for software rely on a highly
simplistic metric to gauge the maturity of the industry.””" Generally, the
pro-strict liability arguments proceed by pointing out a few examples of
large software firms,”* noting the gross annual sales for the industry and
concluding “maturity” based on the industry’s pure economic value (i.e.,
dollars of sales),”® as if the ability to pay damage awards alone defines an
industry’s level of maturity. However, the reality is that the software
industry is composed in vast numbers by small firms, individuals, and
hobbyists. The very few large software firms are the exception rather than
the rule. Therefore, imposing across-the-board strict products liability for

a large sample size. To determine the likelihood that a warning is defective . . .,
the relevant sample for statistical purposes cannot involve the number of products
within a given product line, since each has the same warning. The statistical
sample must instead involve a large number of different [warnings], which must
either come from different product lines or different manufacturers of similar
products. Data involving different product lines or manufacturers may not be
sufficiently similar in the relevant respects, complicating the actuarial
analysis . . . . The magnitude of the liability exposure, coupled with the difficulty
of estimating the likelihood of liability, makes it extremely difficult to insure
against unforeseeable risks.

Id

199. Id

200. Most of the articles calling for the extension of strict products liability to software admit
that advances in technology may slow as a result, suggesting that the industry is perilously sensitive
to changes in its cost matrix. This reflects a quality of immaturity for an industry which has not
developed, for example, the ability to protect itself through political lobbying. See, e.g., Maule,
supra note 162, at 755 (remarking “[t]he imposition of strict products liability may have a chilling
effect on the creation of new advances in computers.”).

201. Seeid.

202. Such large software firms include, for example, Microsoft and IBM.

203. Although proponents also cite the size of a very few software firms as evidence. See
Zollers et al., supra note 9, at 770-72.



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 175

software would put the smaller firms and individuals, who lack the
actuarial expertise needed to calculate the value of their potential liability,
out of the market altogether.

Ability to pay is an insufficient metric for calculating the relative
maturity of an industry. From an economic standpoint, an industry’s
maturity is signaled by several factors: (a) the industry’s stage in its
lifecycle (beginning, middle, end), (b) the standardization of elements
within the industry (tools, processes, standards, semantics, contract terms,
pricing), (c) the number of competitors (many, few), (d) the “normal”
profit margins (above-average, average, low), and (e) the barriers to entry
for new competitors (low, medium, high). Mature industries are indicated
by a late position in the industrial lifecycle, high standardization of
elements within the industry, few and stable competitors, low profit
margins, and high barriers to entry. Examples include: the automotive,
petroleum, home appliance, and carbonated beverage industries. In
contrast, the software industry is at an early stage in the industrial
lifecycle; has little or no standardization of elements (programming
languages, professional standards, testing tools, or contract terms);** it
features legions of competitors and a lot of turnover (i.e., the number of
programming companies and individuals in the industry); maintains above-
average profitability; and offers extremely low barriers to entry for new
firms.*

Society prefers to shield promising new industries from the burdens of
regulation and strict liability placed on more mature manufacturers.
Because, by any credible measure, the software industry is still in its
infancy, it should also be shielded from the onerous cost of strict products
liability against which it cannot insure.

IV. ALTERNATIVES TO STRICT PRODUCTS LIABILITY

[T]he rhetoric of products liability law is, undeniably, a mess. With
a plethora of available doctrines—e.g., negligence, strict liability,
and express and implied warranties of merchantability—courts have

204. There is no licensing authority for programmers, no standards embodied in law, and no
minimum educational requirement.

205. Barriers to entry are an economic concept representing the cost for a new competitor to
enter the market. Since all a programmer needs is access to a computer in order to enter the market,
the barriers to entry are extremely low (compare to the cost of opening a retail store, offering
telephone service, or building a power plant).



176 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

been at sea trying to determine how the standard for defective
design fits into these doctrinal theories.?®

Retaining the status quo by refraining from extending the doctrine of
strict products liability to software will not, as some commentators
suggest,”” leave plaintiffs with a paucity of alternatives to recover for their
injuries. Plaintiffs will continue to have all avenues of recovery that the
law currently provides. The second and more important point is that these
current options are numerous and legally fertile. Injured plaintiffs are
under no threat of denial of recourse against software developers should
courts and legislatures properly decline to extend strict liability to the |
industry.

A number of alternative theories and doctrines exist under which an
injured plaintiff may recover against a software developer or the maker of
a device containing embedded software. This section reviews the most
common alternatives and briefly discusses each in the context of
software. 2

A. Ordinary Negligence

Plaintiffs have prevailed against software-seller defendants on the basis
of traditional negligence by showing that the software provider failed to
exercise a duty of reasonable care in providing the software to the
plaintiff.?® In Invacare Corp. v. Sperry Corp.,*'° the court held that the
defendant software provider “was negligent in . . . recommending the
[software] and . . . it knew, or in the exercise of ordinary care, it should
have known, that the systems were totally inadequate . . . for plaintiff].]*"!
In its opinion, the court specifically noted that liability was premised on
ordinary negligence and “does not give rise to a new tort of ‘computer
malpractice.”**?

206. James A. Henderson, Jr. & Aaron D. Twerski, Achieving Consensus on Defective Product
Design, 83 CORNELL L. REV. 867, 871 (1998).

207. See Zollers et al., supra note 9.

208. Inaddition to the doctrinal remedies described in this section, there may also be state-law
based remedies available to plaintiffs. Frequently, states have enacted legislation governing
business practices generally and products liability in particular which may provide additional
causes of action for consumers injured by defective software. For examples, see commentary to
RESTATEMENT (THIRD) OF TORTS § 19.

209. Id.

210. Invacare Corp. v. Sperry Corp., 612 F. Supp. 448 (N.D. Ohio 1984).

211. Id at453.

212. Id



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 177

Still, plaintiffs who suffer property damages or physical injury caused
by defective software can sue the developer or provider based on ordinary
negligence notwithstanding other claims such as remedies on the contract
or as provided by consumer protection laws. Furthermore, in cases where
a software developer fails to exercise due care, the developer’s liability
exists independent of any contractual disclaimer of warranty. Finally,
plaintiffs may have a cause of action founded in statutory negligence
wheggver defective software violates jurisdictional consumer protection
law.

B. Design and Warnings Defects

The Restatement (Third) of Products Liability permits claims against
manufacturers based on injuries allegedly caused by design defects or
warnings defects.”* Both doctrines require a plaintiff to prove the
existence of a reasonable alternative design (or warning).?'* This is a non-
strict liability standard that amounts to a failure of due care on the part of
the manufacturer (and hence, resembles the ordinary tort of negligence).*'®
If software is to be considered a product for purposes of tort liability, then
the Restatement (Third) doctrines of design and warnings defects (and not
manufacturing defect) should apply. In the case of embedded software,
physical instrumentalities of the device may have a defective design or fail
to properly warn against the risk of injury.?"’

213. See Jim Prince, Negligence: Liability for Defective Software, 33 OKLA.L.REV. 848,854
(1980).

214. See OWEN, supra note 19, at 332-52.

215. I1d

216. Id.

217. This is the main approach taken by Birdsong in the class action,against Apple.

Apple has produced and sold [iPods] . . . which are inherently defective in design
and are not sufficiently adorned with adequate warnings regarding the likelihood
of hearing loss and specifically the onset of noise induced hearing loss, a condition
which has no cure or treatment. Not only are the [iPod]s defectively designed, but
the earphones, commonly referred to as “ear buds,” that are packaged with each
[iPod] are likewise defective in design and do not contain adequate warnings.

Complaint at 1, Birdsong v. Apple Computer, Inc., No. 06-02280, at *1 (N.D. Cal. May 19, 2006).
Birdsong does not allege hearing loss in his complaint, rather that he would not have purchased the
iPod altogether if he had known of its allegedly dangerous qualities. See id.



178 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

C. Product Warranties (Express and Implied)

Warranty law governs the relationship between the product— seller
and consumer and is associated with promises arising out of sales
transactions ordinarily conceived as part of the law of contract.?'® Still,
warranty law arose from common law tort and was, in fact, the progenitor
of strict products liability as conceived in section 402A.%"° Today, versions
of the U.C.C.’s Article 2, as adopted by the states, define express and
implied warranty rights and obligations.””® Claims for breach of the
implied warranty of merchantability have been described as analogous to
the theory of recovery for the sale of defective products under section
402A of the Restatement (Second) and “sometimes [can be a] powerful
products liability law claim” that “truly is a form of ‘strict’ liability.”**'
Proof that a product is defective under tort law generally will establish that
a product is not merchantable, giving rise to a recovery under the implied
warranty.??

The U.C.C. allows product sellers to disclaim the warranty of
merchantability, albeit with some restrictions. Most modern software
disclaims the implied warranties under so-called “shrink-wrap” licenses,
which have been upheld.’”® However, implied warranties cannot be
disclaimed in all cases, and a particular plaintiff may still have a claim in
spite of disclaimers depending on the law in the plaintiff’s jurisdiction.**

D. Professional Malpractice Toward Software Developers

In cases where software is found not to be a product, but rather to be
a service, plaintiffs may pursue a tort cause of action founded in
malpractice by proving a breach of a duty of reasonable care of a similar
professional. It is a sign of the immaturity of the software industry that,

218. See GEISTFELD, supra note 27, at 10.

219. See Owen et al., supra note 9, at 146.

220. Id. at 147.

221. Id. at 166-67.

222. 1d

223. See ProCD, Inc. v. Zeidenberg, 86 F.3d 1447, 1449 (7th Cir. 1996). This is considered
the leading case upholding the validity of shrinkwrap licenses, in which the court held that a
shrinkwrap license is enforceable as a general matter unless its terms are objectionable on grounds
applicable to contracts in general, such as unconscionability.

224. See John M. Conley, Tort Theories of Recovery Against Vendors of Defective Software,
13 RUTGERS COMPUTER & TECH. L.J. 1, 4 (1987) (arguing U.C.C. remedies are sufficient for
plaintiffs injured by defective software). Note that the Birdsong complaint alleges violation of both
the implied warranty of merchantability as well as the implied warranty of fitness for a particular
use as defined in California’s Civil Code section 1791.



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 179

regardless of a recognized need, professional standards have not
developed, and therefore, no commonly-accepted definition of a
“professional computer programmer” exists.””® Understandably, courts
have refused to recognize a new tort of computer malpractice.?”® However,
some courts indicate their willingness to consider an elevated standard of
care for professional programmers. For example, in Diversified Graphics,
Ltd. v. Groves,”" the court decided that a computer consultant could be
held to a professional standard of “degree of skill and care” which was a
matter of fact to be decided by the jury.”?® Furthermore, “professional
persons and those engaged in any work or trade requiring special skill
must possess a minimum of special knowledge and ability as well as
exercise reasonable care.”?? Additional cases show a brief trend in the late
1980s where courts began recognizing an elevated professional standard
for software developers.”°

Therefore, a cause of action may lie in proof that a software developer
failed to meet a minimum standard of skill or failed to exercise
professional reasonable care in the development of the software. Still,
there is no licensing authority for programmers, no standards embodied in
law, and no minimum educational requirement. However, as the industry
matures, it may become possible for courts to begin to shape the outlines
of a professional malpractice standard for computer programmers.

E. Hardware-Based Products Liability

Because embedded software must work with a physical component (the
device) to cause injury, a separate cause of action may lie for manufacture,
design, or warnings defects.”' In the Birdsong complaint, the plaintiff
alleges a defective design of the iPod itself (presumably including the
software), and separately, a defective design of the “ear bud” style

225. See Patricia Haney DiRuggiero, Note, The Professionalism of Computer Practitioners:
A Case for Certification, 25 SUFFOLK U. L. REV. 1139, 1140 (1991).

226. See Analysts Int’l Corp. v. Recycled Paper Prods., Inc., No. 85 C 8637, 1987 U.S. Dist.
LEXIS 5611, at *6 (N.D. Iil. June 19, 1987); see also Chatlos Sys., Inc. v. Nat’l Cash Register
Corp., 479 F. Supp. 738, 740-41 n.1 (D. N.J. 1979).

227. Diversified Graphics, Ltd. v. Groves, 868 F.2d 293 (8th Cir. 1989).

228. Id at296.

229. Id. (citing LeSueur Creamery, Inc. v. Haskon, Inc., 660 F.2d 342, 348 (8th Cir. 1981)).

230. See, e.g., Data Processing Servs., Inc. v. L.H. Smith Qil Corp., 492 N.E.2d 314, 319-20
(Ind. Ct. App. 1986) (computer programmers “hold themselves out to the world as possessing skill
and qualifications in their respective trades or professions [and] impliedly represent they possess
the skill and will exhibit the diligence ordinarily possessed by well informed members of the trade
or profession.”).

231. See OWEN, supra note 19, at 332-52.



180 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

headphones.”? The “ear buds” are inserted directly into the listener’s ears
and form a complete seal, which reduces external noise and enhances the
music sound quality.” If Birdsong can demonstrate that the design of the
ear bud headphones is unreasonably dangerous, then a recovery based
solely on the hardware design would be available; the software would not
be implicated at all.** Even if the ear bud headphones were provided to
Apple by a component manufacturer, Apple would remain liable as the
final assembler.”® Insofar as the hardware is implicated in the injury,
separate causes of action for design, manufacturing, or warnings defects
may exist.”*® Furthermore, a strict liability claim for manufacturing defects
remains available to plaintiffs when the hardware component of a
particular product fails to work as designed due to a problem in the
manufacturing process.?’

F. Misrepresentation (Negligent and Fraudulent)

Plaintiffs injured by devices containing embedded software may have
a cause of action for misrepresentation, including in some jurisdictions, a
strict liability action not requiring any proof of defect at all.”*® Claims of
misrepresentation can be fraudulent (intentionally deceitful) or
negligent.” In either case, the outcome will turn on the actual
communications made by the product seller—particular words, either
written or spoken.”* Fraudulent misrepresentation requires proof of
several elements (varying by jurisdiction), including intent to deceive, also
called scienter? Negligent misrepresentation replaces the scienter
requirement with a duty of reasonable care.** ‘

The Restatement (Second) of Torts section 402B describes the
elements of a claim for strict products liability in tort for

232. Seesupranote 1.

233, Id

234, Id

235. Although Apple might implead the component manufacturer of the headphones.

236. See QWEN, supra note 19, at 332-52,

237. For example, if the battery in a particular iPod were miswired at the factory, and as a
result over-loud volume was played and damaged the plaintiff’s hearing.

238. See Owen et al., supra note 9, at 111-12.

239. See OWEN, supra note 19, at 112-15.

240. Seeid. at115.

241. Seeid. at121.

242, Id



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 181

misrepresentation, which has been adopted in a minority of states.** Under
this doctrine, even a non-negligent seller is liable for a consumer’s injuries
if the consumer justifiably relies on the seller’s affirmative, material, false,
factual communications.?** Furthermore, the consumer’s reliance on the
communication must proximately cause the injury.*® Therefore, a
manufacturer’s description of its product as “completely safe” can give
rise to such liability when the product injures the consumer.**

G. Proof of Causation

Proving, without legions of experts, defects in products containing
software is not impossible. Advocates of strict products liability for
software express concern about the inherent difficulty to search a massive
program’s source codes and to identify with specificity a particular bug or
defect.”’ But plaintiffs need not find the precise line of code where the
defect occurred.

The plaintiff’s burden of proving a design or manufacturing defect is
much lower than this standard. In fact, the Restatement (Third) specifically
addresses the burden of proof issue:

[Wlhen circumstantial evidence supports the conclusion that a
defect was a contributing cause of the harm and that the defect
existed at the time of sale, it is unnecessary to identify the specific
nature of the defect and meet the requisites of § 2. Section 3 frees
the plaintiff from the strictures of § 2 in circumstances in which
common experience teaches that an inference of defect may be
warranted under the specific facts, including the failure of the
product to perform its manifestly intended function.?®

Furthermore, as technology has advanced, plaintiffs have acquired
access to a plethora of tools that reduce their cost of proving defects.””

243. Support for the doctrine of strict products liability for misrepresentation has been found
in perhaps as many as eighteen states. Id. at 136 n.8. It has also been reaffirmed by the Restatement
(Third) of Torts: Products Liability § 9 cmt. b (1998).

244. See OWEN, supra note 19, at 126.

245. Id at 141.

246. See Hauter v. Zogarts, 534 P.2d 377, 381 (Cal. 1975) (the “Golfing Gizmo” case).

247. Of course, the plaintiff’s concern that such a defect would be impossible to find echoes
the defendant’s assertions that such bugs are inherently impossible to guard against.

248. RESTATEMENT (THIRD) OF TORTS: PRODUCTS LIABILITY § 2 cmt. b (1998).

249. For example, debuggers and reverse engineering tools are more robust than they have
ever been.



182 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

Typically, defendant software manufacturers’ documents (such as e-mail)
regarding product design, testing, troubleshooting, and experiences with
other customers are all available via discovery in searchable electronic
format.”® Most defects in embedded software are reproducible once
identified and can be demonstrated in the courtroom.?’

Furthermore, an enormous worldwide community of programmers is
instantly available online for expert assistance. Not just passive resources,
these communities of programmers frequently and proactively conduct
community “peer reviews” of commercial software and document
shortcomings.”* Finally, while it is true that software tools and standards
are in a constant state of flux, it is also true that some common testing
standards are emerging out of the maelstrom. Plaintiffs can reasonably
expect a software developer defendant to produce evidence of testing,
particularly of products that implicate the potential for human injury.*”

Just ten years ago, commentators probably questioned whether
software was a “black box,” which was impenetrable by an ordinary
consumer injured by such defective software. But the introduction in 1998
of the Restatement (Third)’s more flexible evidentiary standards, the
increasing availability of low-cost methods of proving design defects in
software, and the emergence of some consensus on testing standards
provide plaintiffs with tools that alleviate the evidentiary challenges posed
by defective software.

V. CONCLUSION AND RECOMMENDATIONS

Judges may hold the line against an inappropriate application of strict
products liability to software simply by continuing to recognize that
software is not a product for the purposes of tort products liability. Such
a course would be wholly consistent with prior case law; the current
momentum in tort reform, which leans against such a major extension of
products liability; the intangible nature of software; and the policies
behind strict products liability, which would be perverse if applied to
software at this stage in the industry’s lifecycle. Still, this is not a perfect
solution.

250. See, e.g., FED.R. Civ. P. 34(b) (2008).

251. For example, Birdsong could measure the decibel output of a set of iPod ear bud
headphones.

252. This trend is seen clearly in the “white hat” movement where ethical hackers test
commercial software for security defects. See Wikipedia, supra note 61.

253. For but a single example, see Wikipedia, Unit Testing, http://en.wikipedia.org/wiki/
Unit_testing (defining Unit Testing) (as of Sept. 19, 2007, 11:30 EST).



2008] DON'T STOP THE MUSIC: NO STRICT PRODUCTS LIABILITY FOR EMBEDDED SOFTWARE 183

Refusing a products liability claim altogether may deny some deserving
plaintiffs, in some eccentric cases, access to recourse for injuries caused
by negligently designed software. Furthermore, despite software being
wholly a product of the human mind, when embedded into the otherwise
mundane devices which permeate our lives, it begins, more and more, to
resemble a commodity. It is also becoming more and more difficult to
separate the hardware from the embedded software.

Finally, software, unlike other forms of intangible intellectual property,
has the unique ability to cause physical injury. To date, the courts have yet
to face a case involving a software-based injury that shocks the
conscience.” However, at some point in the future, the courts will
inevitably face such a case. Therefore, judges may reconsider the issue and
decide that software can in some circumstances be defined as a “product.”

If products liability suits are to be permitted against software (by
allowing software to be a “product”), courts should adopt the Restatement
(Third)’s categorization of defects. However, plaintiffs should be limited
to the negligence-based categories of design and warnings defects except
in cases where true unique manufacturing defects have occurred and
caused injury, typically in the physical or hardware part of the device.?
Plaintiffs’ lawyers will at some point mistakenly analogize “bugs” to
manufacturing defects, but judges should focus on the policies underlying
the distinction and recognize that a bug is more appropriately considered
a design defect, not a manufacturing defect. A bug is not a “one-in-a-
million” defect like a weakened glass cola bottle. A bug is more like a
lower quality screw selected to hold a saw blade in place, which is a
design defect.”*® Further, courts should recognize that, at the current state
of the art, software is, to some extent, unavoidably unsafe.

Hence, providers should be held to a just standard of reasonable care.
This requires them to exercise prudence in testing and to make a
reasonable attempt to anticipate errors and the potential for injury.
Developers of software with the obvious potential to cause injury™’
should, for example, be expected to provide evidence of software testing
procedures used in the development of the software and document

254. One example might be a case where a software developer who knew of the risk, perhaps
through prior warnings from consumers, but failed to make changes which would have prevented
subsequent injuries from occurring.

255. The author regretfully predicts that it will become more and more difficult to separate the
software and hardware components from each other, however.

256. The discussion of the basis for determining that a software bug is a design rather than a
manufacturing defect is a topic for a completely separate article.

257. A few examples are software which identifies drug interactions, tells a diabetic when to
take insulin, initiates a smoke alarm, or deploys an air bag.



184 UNIVERSITY OF FLORIDA JOURNAL OF LAW & PUBLIC POLICY [Vol. 19

consideration of user safety issues. This will effectively take strict
products liability off the table and require plaintiffs to prove elements,
including: (a) that the software manufacturer should reasonably have
foreseen the danger; (b) that the manufacturer had the ability, through
reasonable care, to eliminate the defect or that a safer design should
reasonably have been adopted; and (c) that a risk-utility analysis shows
that it would have been efficient for the manufacturer to expend the effort
required to identify and eliminate the defect.

Legislative protection for software is needed”® and should be included
in ongoing tort reform efforts. Appropriate legislation should formally
recognize (a) that product liability suits against software are to be decided
under the Restatement (Third); (b) that software defects may only be
categorized as design or warnings defects (i.e., bugs are not manufacturing
defects); and (c) that social policy and the state of the art of software
require that the industry be exempt from strict products liability. Plaintiffs’
lawyers might take comfort in the recognition of software as a product
(allowing claims arising from design and warnings defects) even if strict
liability is not available for suits arising from software. The drafters of the
Restatement of Torts (Third) should also codify that manufacturing defects
are not applicable to computer software (whether embedded or otherwise).

The software industry must be allowed the opportunity to survive its
infancy and adolescence and to deliver on its promise of “a technological
revolution that will rival the industrial revolution in its [beneficial] impact
on society.””® Regardless of the potential risk posed by embedded
software, and in spite of some near-misses (such as the year 2000 bug
crisis), software has not created undue social costs of uncompensated
injury. Given this fact, and given the enormous benefit society realizes
from the software industry, courts should be in no hurry to extend strict
products liability to software and legislatures should respond appropriately
to protect this immature industry.

258. See James A. Henderson, Jr., Why Creative Judging Won't Save the Products Liability
System, 11 HOFSTRA L. REV. 845, 845 (1983) (stating “Especially in cases involving allegedly
defective product designs, courts have encountered difficulties trying to reach results that are
consistent with each other and with underlying notions of public policy.”).

259. Maule, supra note 162, at 755.



	Don't Stop the Music: No Strict Products Liability for Embedded Software
	Recommended Citation

	tmp.1655238636.pdf.WBd50

